分析 (1)首先,確定振幅A,然后,根據(jù)周期公式確定ω=2π,最后,利用特殊點(diǎn),確定φ的值,即可得解函數(shù)解析式;
(2)利用正弦函數(shù)的單調(diào)性即可得解.
解答 解:(1)由題意得:A=2,T=12,
∴$ω=\frac{2π}{T}=\frac{π}{6}$,
可得:$f(x)=2sin(\frac{π}{6}x+φ)$.
由圖象可知$f(x)=2sin(\frac{π}{6}x+φ)$經(jīng)過點(diǎn)(2,2),
所以$2sin(\frac{π}{6}×2+φ)=2$
即$sin(\frac{π}{3}+φ)=1$,
所以$\frac{π}{3}+φ=\frac{π}{2}+2kπ$,且|φ|<π,
所以$φ=\frac{π}{6}$
故 函數(shù)f(x)的解析式為:$f(x)=2sin(\frac{π}{6}x+\frac{π}{6})$.
(2)由圖可知$f(x)=2sin(\frac{π}{6}x+φ)$的單調(diào)減區(qū)間為:[2+12k,8+12k](k∈Z)
利用數(shù)軸可知函數(shù)f(x)在(-2π,2π)上的單調(diào)遞減區(qū)間:(-2π,-4)和(2,2π).
點(diǎn)評 本題重點(diǎn)考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.解題關(guān)鍵是準(zhǔn)確理解所給圖象的信息.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -4 | C. | -7 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0\;\;,\;\;\frac{1}{2}})$ | B. | $({0\;\;,\;\;\frac{1}{4}})$ | C. | $({\frac{1}{2}\;\;,\;\;0})$ | D. | $({\frac{1}{4}\;\;,\;\;0})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com