(2014•湖北模擬)實(shí)數(shù)ai(i=1,2,3,4,5,6)滿足(a2﹣a1)2+(a3﹣a2)2+(a4﹣a3)2+(a5﹣a4)2+(a6﹣a5)2=1則(a5+a6)﹣(a1+a4)的最大值為( )
A.3 B.2 C. D.1
B
【解析】
試題分析:由柯西不等式可得:[(a2﹣a1)2+(a3﹣a2)2+(a4﹣a3)2+(a5﹣a4)2+(a6﹣a5)2](1+1+1+4+1)≥[(a2﹣a1)+(a3﹣a2)+(a4﹣a3)+2(a5﹣a4)+(a6﹣a5)]2,結(jié)合條件,即可得出結(jié)論.
【解析】
由柯西不等式可得:
[(a2﹣a1)2+(a3﹣a2)2+(a4﹣a3)2+(a5﹣a4)2+(a6﹣a5)2](1+1+1+4+1)
≥[(a2﹣a1)+(a3﹣a2)+(a4﹣a3)+2(a5﹣a4)+(a6﹣a5)]2=[(a5+a6)﹣(a1+a4)]2,
∴[(a5+a6)﹣(a1+a4)]2≤8,
∴(a5+a6)﹣(a1+a4)≤2,
∴(a5+a6)﹣(a1+a4)的最大值為2,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.2數(shù)學(xué)歸納法證明不等式舉例(解析版) 題型:解答題
已知數(shù)列{an}的各項(xiàng)都是正數(shù),且滿足:.
(1)求a1,a2;
(2)證明an<an+1<2,n∈N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.2一般形式柯西不等式練習(xí)卷(解析版) 題型:填空題
(2014•遼寧)對于c>0,當(dāng)非零實(shí)數(shù)a,b滿足4a2﹣2ab+b2﹣c=0且使|2a+b|最大時,++的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:填空題
(2014•長安區(qū)三模)己知x,y∈(0,+∞),若+3<k恒成立,利用柯西不等式可求得實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:選擇題
已知a+b=1,則以下成立的是( )
A.a2+b2>1 B.a2+b2=1 C.a2+b2<1 D.a2b2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題
反證法證明三角形的內(nèi)角中至少有一個不小于60°,反設(shè)正確的是( )
A.假設(shè)三內(nèi)角都不大于60° B.假設(shè)三內(nèi)角都小于60°
C.假設(shè)三內(nèi)角至多有一個大于60° D.假設(shè)三內(nèi)角至多有兩個小于60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題
用反證法證明“方程ax2+bx+c=0(a≠0)至多有兩個解”的假設(shè)中,正確的是( )
A.至多有一個解 B.有且只有兩個解
C.至少有三個解 D.至少有兩個解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習(xí)卷(解析版) 題型:選擇題
“執(zhí)果索因”是下列哪種證明方法的特點(diǎn)( )
A.數(shù)學(xué)歸納法 B.反證法 C.分析法 D.綜合法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 1.2絕對值不等式練習(xí)卷(解析版) 題型:選擇題
(2014•吉安二模)已知f(x)=|x﹣1|+|x+m|(m∈R),g(x)=2x﹣1,若m>﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,則實(shí)數(shù)m的取值范圍是( )
A.(﹣1,﹣] B.(﹣1,﹣) C.(﹣∞,﹣] D.(﹣1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com