14.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積等于______cm2.( 。
A.16B.18C.24D.26

分析 根據(jù)三視圖得出該幾何體是直三棱柱,去掉一個底面相同的三棱錐,求出它的體積即可.

解答 解:根據(jù)幾何體的三視圖得:
該幾何體是底面為直角三角形,高為5的直三棱柱,
去掉一個底面為相同的直角三角形,高為3的三棱錐,
∴該幾何體的體積為:V幾何體=V三棱柱-V三棱錐
=$\frac{1}{2}$×4×3×5-$\frac{1}{3}$×$\frac{1}{2}$×4×3×3=24
故選:C.

點評 本題考查了空間幾何體的三視圖得應用問題,解題時應根據(jù)三視圖得出幾何體是什么圖形,從而解得問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.下面幾種推理過程是演繹推理的是(  )
A.在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n∈N*),由其歸納出{an}的通項公式
B.由平面三角形的性質,推測空間四面體性質
C.兩條直線平行,同旁內角互補,如果∠A和∠B是兩條平行直線的同旁內角,則∠A+∠B=180°
D.某校高二共10個班,1班51人,2班53人,3班52人,由此推測各班都超過50人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.圓x2+y2-2x=0和圓x2+y2+4y=0的位置關系是相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+(2b-1)x+6b-a為偶函數(shù),且f(x+1)-f(x)=2x+1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設g(x)=f(x)+λx,求函數(shù)g(x)在[0,1]內的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={y|y=-x2+5},B={x|y=$\sqrt{x-3}$},A∩B=( 。
A.[1,+∞)B.[1,3]C.(3,5]D.[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.tan78°-tan33°tan78°-tan33°等于( 。
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,AB=2,AC=3,∠BAC=60°,D為BC邊上的點且2BD=DC,則|AD|=( 。
A.2B.$\frac{5}{3}$C.$\frac{{\sqrt{37}}}{3}$D.$\frac{{\sqrt{35}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知M(x0,y0)是橢圓C:$\frac{{x}^{2}}{4}$+y2=1上的一點,F(xiàn)1,F(xiàn)2是C上的兩個焦點,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$<0,則x0的取值范圍是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}}{6}$)C.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)D.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)的定義域為[0,4],求函數(shù)y=f(x+3)+f(x2)的定義域為( 。
A.[-2,-1]B.[1,2]C.[-2,1]D.[-1,2]

查看答案和解析>>

同步練習冊答案