分析 把兩圓的方程化為標(biāo)準(zhǔn)方程,分別找出圓心坐標(biāo)和半徑,利用兩點間的距離公式,求出兩圓心的距離d,然后求出R-r和R+r的值,判斷d與R-r及R+r的大小關(guān)系即可得到兩圓的位置關(guān)系.
解答 解:把圓x2+y2-2x=0與圓x2+y2+4y=0分別化為標(biāo)準(zhǔn)方程得:
(x-1)2+y2=1,x2+(y+2)2=4,
故圓心坐標(biāo)分別為(1,0)和(0,-2),半徑分別為R=2和r=1,
∵圓心之間的距離d=$\sqrt{(1-0)^{2}+(0+2)^{2}}=\sqrt{5}$,則R+r=3,R-r=1,
∴R-r<d<R+r,
∴兩圓的位置關(guān)系是相交.
故答案為:相交.
點評 本題考查了圓與圓的位置關(guān)系,圓與圓的位置關(guān)系有五種,分別是:當(dāng)0≤d<R-r時,兩圓內(nèi)含;當(dāng)d=R-r時,兩圓內(nèi)切;當(dāng)R-r<d<R+r時,兩圓相交;當(dāng)d=R+r時,兩圓外切;當(dāng)d>R+r時,兩圓外離(其中d表示兩圓心間的距離,R,r分別表示兩圓的半徑),是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{e-2}{2e}$) | B. | ($\frac{e-2}{2e}$,$\frac{e-1}{e}$) | C. | ($\frac{e-1}{e}$,$\frac{{{e^2}-1}}{e}$) | D. | ($\frac{{{e^2}-1}}{e}$,$\frac{{2{e^2}-1}}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 18 | C. | 24 | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.48 | B. | 0.6 | C. | 0.7 | D. | 0.75 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com