16.執(zhí)行如圖所示框圖,輸入m=153,n=119,輸出m的值為( 。
A.2B.17
C.34D.以上答案都不正確

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量m的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:如果輸入m=153,n=119,
第一次執(zhí)行循環(huán)體后,r=34,m=119,n=34,不滿足輸出條件;
第二次執(zhí)行循環(huán)體后,r=17,m=34,n=17,不滿足輸出條件;
第三次執(zhí)行循環(huán)體后,r=0,m=17,n=0,滿足輸出條件;
故輸出的m值為17.
故選:B.

點評 本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結(jié)論,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間周一周二周三周四周五
車流量x(萬輛)5051545758
PM2.5的濃度y(微克/立方米)6970747879
(1)根據(jù)上表數(shù)據(jù),請在如圖坐標系中畫出散點圖;
(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty=\widehatbx+\widehata$;(保留2位小數(shù))
(3)若周六同一時間段車流量是25萬輛,試根據(jù)(2)求出的線性回歸方程預測,此時PM2.5的濃度為多少(保留整數(shù))?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項的和為Sn=n2-n+1(n∈N*),則數(shù)列{an}的第6項是(  )
A.10B.12C.21D.31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸入x=9,則輸出的y=( 。
A.$\frac{4}{3}$B.$\frac{11}{3}$C.$\frac{29}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖所示,點A是平面BCD外一點,AD=BC=2,E,F(xiàn)分別是AB,CD的中點,且EF=$\sqrt{2}$,則異面直線AD和BC所成的角為90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足“當f(k)≤k2成立時,總可推出f(k+1)≤(k+1)2”成立”.那么,下列命題總成立的是( 。
A.若f(2)≤4成立,則當k≥1時,均有f(k)≤k2成立
B.若f(4)≤16成立,則當k≤4時,均有f(k)≤k2成立
C.若f(6)>36成立,則當k≥7時,均有f(k)>k2成立
D.若f(7)=50成立,則當k≤7時,均有f(k)>k2成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,若p=$\frac{11}{12}$,則輸出的n=( 。
A.4B.5C.6D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.畫出滿足下列條件的平面,并用字母表示
(1)水平放置的平面;
(2)豎直放置的平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)已知等差數(shù)列{an}的公差d≠0,前n項和為Sn,則{Sn}是遞減數(shù)列的充要條件是( 。
A.d<0且a1<0B.d>0且a1<0C.d<0且a2<0D.d>0且a1<0

查看答案和解析>>

同步練習冊答案