3.下列各式正確的是( 。
A.arctan(-1)=$\frac{3π}{4}$B.arctan($\frac{1}{2}$)=$\frac{π}{6}$C.arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$D.arccos(-$\frac{1}{2}$)=-$\frac{π}{3}$

分析 根據(jù)反三角函數(shù)的定義域和值域判斷.

解答 解:arctan(-1)=-$\frac{π}{4}$,
∵arctan$\frac{\sqrt{3}}{3}$=$\frac{π}{6}$,
arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$,
arccos(-$\frac{1}{2}$)=π-arccos$\frac{1}{2}$=π-$\frac{π}{3}$=$\frac{2π}{3}$.
故選C.

點(diǎn)評(píng) 本題考查了反三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)隨機(jī)變量X服從[0,0.2]上的均勻分布,隨機(jī)變量Y的概率密度為fY(y)=$\left\{\begin{array}{l}{5{e}^{-5y},y≥0}\\{0,其他}\end{array}\right.$,且X與Y相互獨(dú)立.
求:(1)X的概率密度;
(2)(X,Y)的概率密度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.我國(guó)的《洛書》中記載著世界上最古老的幻方:將1,2,…,9填入方格內(nèi),使三行、三列,兩條對(duì)角線的三個(gè)數(shù)之和都等于15,如圖所示.
一般地,將連續(xù)的正整數(shù)1,2,…,n2填入n×n個(gè)方格中,使得每行,每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形叫做n階幻方.記n階幻方的對(duì)角線上數(shù)的和為Nn,例如N3=15,N4=34,N5=65…那么Nn=$\frac{n({n}^{2}+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在同一坐標(biāo)系中,將曲線y=$\frac{1}{2}$sin3x變?yōu)榍y'=sinx′的伸縮變換是( 。
A.$\left\{{\begin{array}{l}{x=3x'}\\{y=\frac{1}{2}y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x'=3x}\\{y'=2y}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,正四棱錐 (底面是正方形,頂點(diǎn)在底面的射影是底面的中心) P-ABCD的底面邊長(zhǎng)為6cm,側(cè)棱長(zhǎng)為5cm,正方形ABCD的中心為O,PO⊥OA,則它的側(cè)視圖的面積等于3$\sqrt{7}$ cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.把下列參數(shù)方程化為普通方程,并說(shuō)明他們各表示什么曲線:
(1)$\left\{\begin{array}{l}x=1-3t\\ y=4t\end{array}$(t為參數(shù))
(2)$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,在四邊形ABCD中,AB=BC=2,∠ABC=90°,DA=DC=$\sqrt{6}$.現(xiàn)沿對(duì)角線AC折起,使得平面DAC⊥平面ABC,此時(shí)點(diǎn)A,B,C,D在同一個(gè)球面上,則該球的體積是( 。
A.$\frac{9}{2}π$B.$\frac{{8\sqrt{2}}}{3}π$C.$\frac{27}{2}π$D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)蓬勃發(fā)展的新機(jī)遇,2016年雙11期間,某平臺(tái)的銷售業(yè)績(jī)高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門也推出了針對(duì)電商的商品和服務(wù)評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功的交易,并對(duì)其評(píng)價(jià)結(jié)果進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為$\frac{3}{5}$,對(duì)服務(wù)的好評(píng)率為$\frac{3}{4}$,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.在犯錯(cuò)誤概率不超過(guò)( 。┑那疤嵯拢J(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
A.2.5%B.1%C.0.1%D.97.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到K2的觀測(cè)值k=$\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}$≈4.844,則有95%的把握認(rèn)為選修文科與性別有關(guān).
理科文科合計(jì)
131023
72027
合計(jì)203050

查看答案和解析>>

同步練習(xí)冊(cè)答案