分析 先根據(jù)函數(shù)f(x)的解析式,分別將x=1,2,3代入求得f(1),f(3),f(2),進(jìn)而求得f(1)+f(3)-2f(2).再假設(shè)|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,推出-2<f(1)+f(3)-2f(2)<2,利用此式與上面求得的式子矛盾,從而得出證明.
解答 證明:∵f(x)=x2+ax+b
∴f(1)=1+a+b,f(2)=4+2a+b,f(3)=9+3a+b,
∴f(1)+f(3)-2f(2)=(1+a+b)+(9+3a+b)-2(4+2a+b)=2.
假設(shè)|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,
則|f(1)|<$\frac{1}{2}$,|f(2)|<$\frac{1}{2}$,|f(3)|<$\frac{1}{2}$,
即有-$\frac{1}{2}<$f(1)<$\frac{1}{2}$,-$\frac{1}{2}<$f(2)<$\frac{1}{2}$,-$\frac{1}{2}<$f(3)<$\frac{1}{2}$,
∴-2<f(1)+f(3)-2f(2)<2
與f(1)+f(3)-2f(2)=2矛盾,
∴假設(shè)不成立,即原命題成立
點(diǎn)評(píng) 反證法是一種從反面的角度思考問(wèn)題的證明方法,體現(xiàn)的原則是正難則反.反證法的基本思想:否定結(jié)論就會(huì)導(dǎo)致矛盾,證題模式可以簡(jiǎn)要的概括為“否定→推理→否定”.實(shí)施的具體步驟是:
第一步,反設(shè):作出與求證結(jié)論相反的假設(shè);
第二步,歸謬:將反設(shè)作為條件,并由此通過(guò)一系列的正確推理導(dǎo)出矛盾;
第三步,結(jié)論:說(shuō)明反設(shè)不成立,從而肯定原命題成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲組 | 91 | 86 | 82 | 75 | 93 | 90 | 68 | 82 | 76 | 94 | 92 | 64 |
乙組 | 77 | 84 | 95 | 81 | 98 | 69 | 72 | 88 | 93 | 65 | 70 | 85 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7π | B. | 8π | C. | $\frac{28π}{3}$ | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | $-\sqrt{2}$或$\sqrt{2}$ | D. | -1或1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com