18.若實(shí)數(shù)x,y滿足|x-3|≤y≤1,則z=$\frac{2x+y}{x+y}$的最小值為$\frac{5}{3}$.

分析 把已知的不等式轉(zhuǎn)化為不等式組,然后作出可行域,化目標(biāo)函數(shù)為含有$\frac{y}{x}$的代數(shù)式,然后由$\frac{y}{x}$的幾何意義求出其范圍,代入目標(biāo)函數(shù)求得目標(biāo)函數(shù)的最小值.

解答 解:依題意,得實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{0≤y≤1}\end{array}\right.$,畫出可行域如圖所示,

其中A(3,0),C(2,1),
z=$\frac{2x+y}{x+y}$=$\frac{x+y}{x+y}+\frac{x}{x+y}=1+\frac{1}{1+\frac{y}{x}}$,
設(shè)k=$\frac{y}{x}$,則k的幾何意義為區(qū)域內(nèi)的點(diǎn)與原點(diǎn)的斜率,
則OC的斜率最大為k=$\frac{1}{2}$,OA的斜率最小為k=0,
則0≤k≤$\frac{1}{2}$,則1≤k+1≤$\frac{3}{2}$,$\frac{2}{3}$≤$\frac{1}{1+\frac{y}{x}}$≤1,
故$\frac{5}{3}$≤1+$\frac{1}{1+\frac{y}{x}}$≤2,
故z=$\frac{2x+y}{x+y}$的最小值為$\frac{5}{3}$.
故答案為:$\frac{5}{3}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及直線斜率的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,既是奇函數(shù)又在其定義域上是增函數(shù)的是( 。
A.$y=-\frac{2}{x}$B.y=x3C.y=log2xD.y=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某高中有甲、乙兩個(gè)生物興趣小組,分別獨(dú)立開展對(duì)一種海洋生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗(yàn)一個(gè)生物,甲組能使生物成活的概率為$\frac{3}{4}$,乙組能使生物成活的概率為$\frac{1}{3}$,假定試驗(yàn)后生物成活,則稱該試驗(yàn)成功,如果生物不成活,則稱該次試驗(yàn)是失敗的.
(1)甲小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)若甲.乙兩小組各進(jìn)行2次試驗(yàn),設(shè)試驗(yàn)成功的總次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知關(guān)于t的方程t2+(a-4)t+a=0在(0,+∞)上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知f(cosx)=cos17x,求證:f(sinx)=sin17x;
(2)對(duì)于怎樣的整數(shù)n,才能由f(sinx)=sinnx推出f(cosx)=cosnx?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=x2+ax+b,用反證法證明:|f(1)|,|f(2)|,|f(3)|不都小于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖、已知直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).
(Ⅰ)求證:CD⊥A1D;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{x+1≥0}\\{x-y≤1}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y}{x-2}$的取值范圍為( 。
A.[-3,3]B.[-2,2]C.[-1,1]D.[-$\frac{2}{3}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,點(diǎn)F為拋物線x2=8y的焦點(diǎn),則點(diǎn)F到雙曲線x2-$\frac{{y}^{2}}{9}$=1的漸近線的距離為$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案