在△ABC中,已知
AB
AC
=9,
AB
BC
=-16.求:
(1)AB的值;
(2)
sin(A-B)
sinC
的值.
考點:余弦定理,平面向量數(shù)量積的運算
專題:三角函數(shù)的求值
分析:(1)已知兩等式利用平面向量的數(shù)量積運算化簡,再利用余弦定理表示出cosA與cosB,代入表示出的關(guān)系式求出,兩式相加求出c的值即可;
(2)原式分子利用兩角和與差的正弦函數(shù)公式化簡,將bccosA=9,accosB=16,c2=25代入即可求出值.
解答: 解:(1)設(shè)A,B,C的對邊依次為a,b,c,
已知
AB
AC
=9,
AB
BC
=-16,利用平面向量數(shù)量積運算法則計算得:bccosA=9①,accosB=-16②,
由余弦定理得:cosA=
b2+c2-a2
2bc
,cosB=
c2+a2-b2
2ac
,
代入①②得:
1
2
(b2+c2-a2)=9③,
1
2
(c2+a2-b2)=16④,
③+④得:c2=25,
則AB=c=5;                        
(2)
sin(A-B)
sinC
=
sinAcosB-cosAsinB
sinC
,
∵bccosA=9,accosB=-16,c2=25,
∴由正弦定理化簡得:
sin(A-B)
sinC
=
acosB-bcosA
c
=
accosB-bccosA
c2
=-1.
點評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3,則下列說話正確的是( 。
A、f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù)
B、f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù)
C、f(x)為偶函數(shù),且在(0,+∞)上是增函數(shù)
D、f(x)為偶函數(shù),且在(0,+∞)上是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓 
x2
9
+
y2
m2
=1
,(0<m<3)的左右焦點分別為F1、F2,過F2的直線與橢圓交于A、B兩點,點B關(guān)于y軸的對稱點為點C,則四邊形AF1CF2的周長為( 。
A、2m
B、4m
C、4
9-m2
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以原點為中心,以坐標軸為對稱軸的橢圓C的一個焦點為(0,
3
)
,且過點(0,2).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)直線y=kx+1與橢圓C交于A,B兩點,k為何值時
OA
OB
?此時|
AB
|
的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1、F2為雙曲線C:x2-
y2
b2
=1的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,∠MF1F2=30°.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求
PP1
PP2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x
x-1
的定義域為集合A,關(guān)于x的不等式32ax<3a+x(a∈R)的解集為B,求使A∩B=A的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+1,g(x)=x2+
b
x
-1,(a,b∈R).
(1)若曲線y=g(x)在點(1,g(1))處的切線平行于x軸,求b的值;
(2)當a>0時,若對?x∈R(1,e),f(x)>x恒成立,求實數(shù)a的取值范圍;
(3)設(shè)p(x)=f(x)+g(x),在(1)的條件下,證明當a≤0時,對任意兩個不相等的正數(shù)x1,x2,有
p(x1)+p(x2)
2
>p(
x1+x2
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2,x≤2
3x-2,x>2
,則f(3)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式(a-2)x2+2(a-2)x-4<0的解集為R,則a的取值范圍是( 。
A、a≤2B、-2<a≤2
C、-2<a<2D、a<2

查看答案和解析>>

同步練習冊答案