18.不等式組$\left\{\begin{array}{l}{x-y≤0}&{\;}\\{x+y≥-2}&{\;}\\{x-2y≥-2}&{\;}\end{array}\right.$的解集記為D,若(a,b)∈D,則z=2a-3b的最小值是( 。
A.-4B.-1C.1D.4

分析 由題意作平面區(qū)域,從而可得當(dāng)a=-2,b=0時(shí)有最小值,從而求得.

解答 解:由題意作平面區(qū)域如下,
,
結(jié)合圖象可知,
當(dāng)a=-2,b=0,即過點(diǎn)A時(shí),
z=2a-3b有最小值為-4,
故選:A.

點(diǎn)評(píng) 本題考查了線性規(guī)劃問題,同時(shí)考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知菱形ABCD,若|$\overrightarrow{AB}$|=1,A=$\frac{π}{3}$,則向量$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.A,B,C三個(gè)集合,若A?B∪C,則有( 。┏闪ⅲ
A.若x$\overline{∈}$B∪C,則x$\overline{∈}$AB.若x∈A,則x∈B∩CC.若x∈A,則x∈CD.若x∈A,則x∈B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(x,3),當(dāng)x為何值時(shí):
(1)$\overrightarrow{a}$∥$\overrightarrow$;
(2)$\overrightarrow{a}$⊥$\overrightarrow$;
(3)向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角是鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)單位向量.
(1)若|3$\overrightarrow{a}$-2$\overrightarrow$|=3,試求|3$\overrightarrow{a}+\overrightarrow$|的值;
(2)若$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,試求向量$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow$與$\overrightarrow{n}$=2$\overrightarrow$-$\overrightarrow{a}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.求下列函數(shù)的二階導(dǎo)數(shù)
y=$\frac{{e}^{x}}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.滿足$\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}$的角x的集合是{x|x=2kπ-$\frac{π}{6}$,或x=2kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)z滿足|Z-3i|=1.問:(1)若Z為純虛數(shù),求|Z|的大。
(2)求|Z|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,若x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案