【題目】如圖,三棱柱中,側(cè)面,已知,,點(diǎn)E是棱的中點(diǎn).

1)求證:平面ABC

2)在棱CA上是否存在一點(diǎn)M,使得EM與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.

【答案】1)見解析;(2)存在,

【解析】

1)利用余弦定理解得,結(jié)合勾股定理得到,證得側(cè)面,

,繼而可證平面ABC;

2)以B為原點(diǎn),分別以,的方向?yàn)?/span>xyz軸的正方向建立空間直角坐標(biāo)系,假設(shè)存在點(diǎn)M,設(shè),由EM與平面所成角的正弦值為,可求解.

1)由題意,因?yàn)?/span>,,,利用余弦定理,

解得,又,,側(cè)面,

AB,平面ABC直線平面ABC

2)以B為原點(diǎn),分別以的方向?yàn)?/span>x,yz軸的正方向建立如圖所示的空間直角坐標(biāo)系,

則有,,,

設(shè)平面的一個法向量為,,

,令,則,

假設(shè)存在點(diǎn)M,設(shè),,,

,

利用平面的一個法向量為,,得

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,交曲線E于點(diǎn)AB,交曲線E于點(diǎn)C,D.

1)求曲線E的普通方程及極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的長半軸為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn)為動直線與橢圓的兩個交點(diǎn),問:在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等,在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方式一:逐份檢驗(yàn),則需要檢驗(yàn).

方式二:混合檢驗(yàn),將其中)份血液樣本分別取樣混合在一起檢驗(yàn).

若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗(yàn),此時這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.

1)現(xiàn)有份血液樣本,其中只有份樣本為陽性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次為.

i)若,試求關(guān)于的函數(shù)關(guān)系式;

ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于、兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且點(diǎn)處取得極值.

)若關(guān)于的方程在區(qū)間上有解,求的取值范圍;

)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,,G,H分別為上的點(diǎn),平面平面,.

1)證明:平面平面;

2)若,,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動直線l過拋物線Cy24x的焦點(diǎn)F,且與拋物線C交于MN兩點(diǎn),且點(diǎn)Mx軸上方.

1)若線段MN的垂直平分線交x軸于點(diǎn)Q,若|FQ|8,求直線l的斜率;

2)設(shè)點(diǎn)Px0,0),若點(diǎn)M恒在以FP為直徑的圓外,求x0的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案