1.已知實數(shù)x.y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,z=|4x-4y+3|,則z的取值范圍是(  )
A.[$\frac{5}{3}$,15]B.[$\frac{5}{3}$,15)C.[$\frac{5}{3}$,5)D.(5,15)

分析 由約束條件作出可行域如圖,令u=4x-4y+3,由線性規(guī)劃知識求出u的最值,取絕對值求得z=|u|的取值范圍

解答 解:由約束條件作可行域如圖,
設(shè)u=4x-4y+3,
則y=x+$\frac{3-u}{4}$,
平移直線y=x+$\frac{3-u}{4}$,
則當(dāng)直線y=x+$\frac{3-u}{4}$經(jīng)過點A時,截距最大,此時u最小,
經(jīng)過點B時,截距最小,此時u最大(但取不到),
由$\left\{\begin{array}{l}{x-2y+1=0}\\{x+y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即A($\frac{1}{3}$,$\frac{2}{3}$),
此時u=4×$\frac{1}{3}$-4×$\frac{2}{3}$+3=$\frac{5}{3}$,
由$\left\{\begin{array}{l}{x=2}\\{x+y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即B(2,-1),
此時u=4×2-4×(-1)+3=15,
故$\frac{5}{3}$≤u<15,
即$\frac{5}{3}$≤|u|<15,
∴$\frac{5}{3}$≤z<15,
故選:B.

點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,求z得取值范圍,轉(zhuǎn)化為求目標(biāo)函數(shù)u=4x-4y+3的取值范圍是解決本題的關(guān)鍵.,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知α∩β=l,a?α,b?β,a∥b.求證:a∥l,b∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\frac{sin(2π-α)cos(π+α)}{cos(π-α)sin(3π-α)sin(-π-α)}$=3,求tan(5π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=x2+ax+b在區(qū)間(0,1)上與x軸有兩個不同的交點,求b2+ab+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)Sn是等比數(shù)列{an}的前n項和,且a2=$\frac{1}{9}$,S2=$\frac{4}{9}$.
(1)求數(shù)列{an}的通項an
(2)設(shè)bn=$\frac{1}{{a}_{n}}$+n,n∈N*,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的中心在原點,焦點在x軸上,離心率等于$\frac{{\sqrt{3}}}{2}$,它的一個頂點恰好在拋物線x2=8y的準線上.
(1)求橢圓C的標(biāo)準方程;
(2)點P(2,$\sqrt{3}$),Q(2,-$\sqrt{3}$)在橢圓上,A,B是橢圓上位于直線PQ兩側(cè)的動點.當(dāng)A,B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.檢查甲、乙兩廠的100瓦電燈泡的生產(chǎn)質(zhì)量,分別抽取20只燈泡,檢查如下:
瓦數(shù) 94 96 98 100 102 104 106 
甲廠個數(shù) 
 乙廠個數(shù)
求:哪個廠的生產(chǎn)情況比較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x.
(1)求f(x)的單調(diào)減區(qū)間;
(2)求f(x)圖象上與原點最近的對稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在三角形中,a=6,tanB=$\sqrt{7}$,若$\frac{a}{2RsinC}$=$\sqrt{2}$,R為外接圓的半徑,求sinC.

查看答案和解析>>

同步練習(xí)冊答案