【題目】(本小題滿分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時,求使的取值范圍.

【答案】)解: ∵,

2

解得. 4

故所求定義域為. …………………………………………5

)由()知的定義域為,

7

, 9

為奇函數(shù). ………………………………………………………………10

)因為f(x)>0

所以loga(x+1)-loga(1-x)>0,即loga(x+1)>loga(1-x) 12

因為當(dāng)時,y=logax(0,+)內(nèi)是增函數(shù),

所以x+1>1-x,所以x>0, 13

的定義域為,所以.

所以使的取值范圍是. ……………………14

【解析】

: ,

解得.

故所求定義域為.…………………………………4

)由()知的定義域為,

,

為奇函數(shù). ………………………………………………9

)因為當(dāng)時,在定義域內(nèi)是增函數(shù),

所以.

解得.

所以使的取值范圍是.…………………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,邊上的中線所在直線方程為,的角平分線所在直線的方程為。求

(1)求頂點的坐標(biāo);

(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓與雙曲線有相同的焦點,,橢圓的一個短軸端點為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的方程為 ,⊙C的極坐標(biāo)方程為ρ=4cosθ+2sinθ.
(1)求直線l和⊙C的普通方程;
(2)若直線l與圓⊙C交于A,B兩點,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD=4,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE,構(gòu)成四棱錐A1﹣BCDE,若M為線段A1C的中點,在翻轉(zhuǎn)過程中有如下4個命題: ①MB∥平面A1DE;
②存在某個位置,使DE⊥A1C;
③存在某個位置,使A1D⊥CE;
④點A1在半徑為 的圓面上運動,
其中正確的命題個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 表示雙曲線,命題 表示橢圓。

(1)若命題與命題 都為真命題, 的什么條件?

(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)

(2)若 為假命題, 為真命題,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,動點M2,t)(.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求以OM為直徑且截直線所得的弦長為2的圓的方程;

3)設(shè)F是橢圓的右焦點,過點FOM的垂線與以OM為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 (其中為圓心)上的每一點橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得到曲線.

1)求曲線的方程;

2若點為曲線上一點,過點作曲線的切線交圓于不同的兩點(其中的右側(cè)),已知點.求四邊形面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案