若一條直線與一個平面成72°角,則這條直線與這個平面內(nèi)經(jīng)過斜足的直線所成角中最大角等于( 。
A、72°B、90°
C、108°D、180°
考點:直線與平面所成的角
專題:空間角
分析:由已知中一條直線與一個平面成72°角,根據(jù)線面夾角的性質(zhì)--最小角定理,我們可以求出這條直線與這個平面內(nèi)不經(jīng)過斜足的直線所成角的范圍,進而求出其最大值.
解答: 證明:已知AB是平面a的斜線,A是斜足,BC⊥平面a,C為垂足,
則直線AC是斜線AB在平面a內(nèi)的射影.
設(shè)AD是平面a內(nèi)的任一條直線,且BD⊥AD,垂足為D,
又設(shè)AB與AD所成的角∠BAD,AB與AC所成的角為∠BAC.
BC⊥平面a mBD⊥AD 由三垂線定理可得:DC⊥AC
sin∠BAD=
BD
AB
,sin∠BAC=
BC
AB

在Rt△BCD中,BD>BC,
∠BAC,∠BAD是Rt△內(nèi)的一個銳角所以∠BAC<∠BAD.
從上面的證明可知最小角定理,斜線和平面所成的角是這條斜線和平面內(nèi)過斜足的直線所成的一切角,其中最大的角為90°,由已知中一條直線與一個平面成72°角,這條直線和這個平面內(nèi)經(jīng)過斜足的直線所成角的范圍是:72°≤θ≤90°
故選:B
點評:本題考查的知識要點:最小角定理的應(yīng)用.線面的夾角.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
x2
4
+
y2
9
=1
,直線l:
x=2+t
y=2-2t
(t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(普通文科做)如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分別是棱AD,AA1的中點,F(xiàn)為AB的中點.求:
(1)點D到平面EE1C的距離;
(2)求三棱錐E1-FCC1的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,則“x
2
3
”是“3x2+x-2>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)線段AB的兩個端點A、B分別在x軸、y軸上滑動,且|AB|=4,點M是線段AB的中點,則點M的軌跡方程是( 。
A、
x2
9
+
y2
4
=1
B、x2+y2=4
C、x2-y2=4
D、
y2
25
+
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:AO⊥平面OBC,A-BC-O的平面角為α.求證:cosα=
S△OBC
S△ABC
.并類比平面直角三角形ABC(C為斜邊),cosA=
a
c
.寫出你的解題反思或解題感悟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2x,過點P(1,0)的直線交拋物線于A,B兩點,若△OAB的面積為
3
2
,則直線AB的斜率k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的左、右焦點為F1、F2,橢圓上一個動點P滿足|
PF1
|+|
PF2
|=4,|
F1F2
|=2
3

(1)求橢圓的方程;
(2)是否存在過定點(0,2)的直線l與橢圓交于不同的A、B,∠AOB=
π
2
,若存在,求出直線方程;若不存在,說明理由;
(3)由(2)問中,若∠AOB為銳角,求直線的斜率范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
1
2
x-a(a∈R),若存在b∈[1,e],(e為自然對數(shù)的底數(shù)),使得f(f(b))=b,則實數(shù)a的取值范圍是(  )
A、[-
1
2
,1-
e
2
]
B、[1-
e
2
,ln2-1]
C、[-
1
2
,ln2-1]
D、[-
1
2
,0]

查看答案和解析>>

同步練習(xí)冊答案