18.已知長方體從同一頂點出發(fā)的三條棱長分別為a,b,c,且a,$\frac{2}$,c成等差數(shù)列.若其對角線長為$\sqrt{6}$,則b的最大值為2.

分析 利用a,$\frac{2}$,c成等差數(shù)列,可得b=a+c,對角線長為$\sqrt{6}$,可得a2+b2+c2=6,結(jié)合2(a2+c2)≥(a+c)2,可得b的最大值.

解答 解:∵a,$\frac{2}$,c成等差數(shù)列,
∴b=a+c,
∵對角線長為$\sqrt{6}$,
∴a2+b2+c2=6,
∴a2+c2=6-b2,
∵2(a2+c2)≥(a+c)2,
∴2(6-b2)≥b2
∴b2≤4,
∴b≤2,
∴b的最大值為2.
故答案為:2.

點評 本題考查長方體的結(jié)構(gòu)特征,考查等差數(shù)列的性質(zhì),考查基本不等式的運用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.下列式子中,最小值為2的有①②③⑤
①y=2x+$\frac{1}{{2}^{x}}$;②y=x2+$\frac{1}{{x}^{2}}$;③y=$\frac{1}{si{n}^{2}x}+si{n}^{2}x$;
④y=$\frac{2}{sinx}+\frac{sinx}{2}$,x∈(0,π);⑤y=tanx+$\frac{cosx}{sinx}$,x$∈(π,\frac{3π}{2})$;
⑥y=$\sqrt{{x}^{2}+2}+\frac{1}{\sqrt{{x}^{2}+2}}$⑦y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-$\frac{3}{2}$ax2+4,其中a>0.
(1)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若f(x)>0對x∈[-1,1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+2x2-a2x+b2在x=1處取得極大值,
(1)求a的值及f(x)的單調(diào)區(qū)間;
(2)若關于x的方程f(x)=$\frac{4}{9}$b在區(qū)間[0,2]上恰有三個解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ax2-4ln(x-1).
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對一切x∈[2,e+1],f(x)≤4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=ln$\frac{1}{{a}^{4}x}$-x2+ax(a>0).
(1)若f(x)在定義域上為單調(diào)函數(shù),求a的取值范圍;
(2)設x1,x2為函數(shù)f(x)的兩個極值點,求f(x1)+f(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖所示正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E,F(xiàn)且EF=$\sqrt{2}$,給出下列五個結(jié)論
①AC⊥BE
②EF∥平面ABCD
③異面直線AE,BF所成的角為60°
④A1點到面BEF的距離為定值
⑤三棱柱A-BEF的體積為定值
其中正確的結(jié)論有:①②④⑤(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-3
(1)求函數(shù)g(x)=exf(x)的極值;
(2)過點A(2,t),存在與曲線y=x(f(x)-9)相切的3條切線,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.根據(jù)下面數(shù)列的前幾項的值,寫出數(shù)列的一個通項公式:
(1)3,5,9,17,33;
(2)$\frac{2}{3}$,$\frac{4}{15}$,$\frac{6}{35}$,$\frac{8}{63}$,$\frac{10}{99}$;
(3)2,-6,12,-20,30,-42;
(4)0,5,0,5,0,5;
(5)1,0,1,0,1;
(6)9,99,999,9999;
(7)7,77,777,7777.

查看答案和解析>>

同步練習冊答案