分析 先利用余弦定理求得c,最后根據(jù)正弦定理求得sinA的值.
解答 解:∵a=2,b=3,C=120°,
∴c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{{2}^{2}+{3}^{2}-2×2×3×cos120°}$=$\sqrt{19}$,
由正弦定理知sinA=$\frac{a•sinC}{c}$=$\frac{2×sin120°}{\sqrt{19}}$=$\frac{\sqrt{57}}{19}$.
故答案為:$\frac{\sqrt{57}}{19}$.
點(diǎn)評 本題主要考查了正弦定理和余弦定理的應(yīng)用.作為解三角形問題的重要公式,考生應(yīng)熟練記憶并能靈活運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{3\sqrt{2}}{4}$,$\frac{3\sqrt{2}}{4}$] | B. | [-$\frac{\sqrt{6}}{4}$,$\frac{\sqrt{6}}{4}$] | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com