分析 (1)通過f′(2)=0及f(1)=0,計(jì)算即得結(jié)論;
(2)通過對函數(shù)f(x)=x3-3x2+2求導(dǎo),進(jìn)而可判斷單調(diào)區(qū)間;
(3)通過函數(shù)在[0,+∞)上的單調(diào)性,結(jié)合最值的概念,畫出草圖,計(jì)算即得結(jié)論.
解答 解:(1)∵f(x)=x3+ax2+b,
∴f′(x)=3x2+2ax,
∵函數(shù)f(x)在x=2時函數(shù)取得極值,
∴f′(2)=0,即12+4a=0,
∴a=-3,
又∵f(1)=1-3+b=0,
∴b=2,
綜上a=-3、b=2;
(2)由(1)可知f(x)=x3-3x2+2,
∴f′(x)=3x2-6x=3x(x-2),
∵x<0時,f′(x)>0,
∴函數(shù)f(x)在(-∞,0)上單調(diào)遞增;
∵0<x<2時,f′(x)<0,
∴函數(shù)f(x)在(0,2)上單調(diào)遞減;
∵x>2時,f′(x)>0,
∴函數(shù)f(x)在(2,+∞)上單調(diào)遞增;
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為:(0,2),
單調(diào)遞增區(qū)間為:(-∞,0)∪(2,+∞);
(3)令f(x)=f(0),即x3-3x2+2=2,
解得:x=0或x=3,
∵函數(shù)f(x)在(0,2)上單調(diào)遞減,
∴當(dāng)t∈(0,2]時,g(t)=f(0)=2;
∵函數(shù)f(x)在(2,+∞)上單調(diào)遞增,且f(3)=f(0)=2,
∴當(dāng)t∈(2,3]時,g(t)=f(3)=2;
當(dāng)t∈(3,+∞)時,g(t)=f(t)=t3-3t2+2;
綜上所述,g(t)=$\left\{\begin{array}{l}{2,}&{0<t≤3}\\{{t}^{3}-3{t}^{2}+2,}&{t>3}\end{array}\right.$.
點(diǎn)評 本題考查導(dǎo)數(shù)的簡單應(yīng)用、分段函數(shù),考查分析問題、解決問題的能力,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | (-∞,1) | C. | [0,1) | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 35種 | B. | 53種 | C. | 60種 | D. | 10種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值62 | B. | 有最小值63 | C. | 有最大值62 | D. | 有最小值31 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b2f(a)<a2f(b),b3f(a)>a3f(b) | B. | b2f(a)>a2f(b),b3f(a)<a3f(b) | ||
C. | b2f(a)>a2f(b),b3f(a)>a3f(b) | D. | b2f(a)<a2f(b),b3f(a)<a3f(b) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com