分析 根據(jù)條件分別構(gòu)造不同的函數(shù),求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系進(jìn)行判斷即可.
解答 解:f′(x)=lnx+1,
x∈(0,$\frac{1}{e}$)時(shí),f′(x)<0,∴f(x)在(0,$\frac{1}{e}$)單調(diào)遞減,
x∈($\frac{1}{e}$,+∞),f′(x)>0,.∴f(x)在($\frac{1}{e}$,+∞)上單調(diào)遞增.
①令g(x)=f(x)-x=xlnx-x,
則g′(x)=lnx,設(shè)x1,x2∈(1,+∞),
則g′(x)>0,∴函數(shù)g(x)在(1,+∞)上是增函數(shù),
∴由x2>x1得g(x2)>g(x1);
∴f(x2)-x2>f(x1)-x1,∴$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>1;故①錯(cuò)誤;
②令g(x)=$\frac{f(x)}{x}$=lnx,則g′(x)=$\frac{1}{x}$,(0,+∞)上函數(shù)單調(diào)遞增,
∵x2>x1>0,∴g(x2)>g(x1),∴x2•f(x1)<x1•f(x2),即②正確,
③當(dāng)lnx1>-1時(shí),f(x)單調(diào)遞增,
∴x1•f(x1)+x2•f(x2)-2x2f(x1)=x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]=(x1-x2)[f(x1)-f(x2)]>0
∴x1•f(x1)+x2•f(x2)>x1•f(x2)+x2f(x1),
∵x2•f(x1)<x1•f(x2),
利用不等式的傳遞性可以得到x1•f(x1)+x2•f(x2)>2x2f(x1),故③正確.
④令h(x)=f(x)+x=xlnx+x,則h′(x)=lnx+2,
∴x∈(0,$\frac{1}{{e}^{2}}$)時(shí),h′(x)<0,
∴函數(shù)h(x)在(0,$\frac{1}{{e}^{2}}$)上單調(diào)遞減,
設(shè)x1,x2∈(0,$\frac{1}{{e}^{2}}$),所以由x1<x2得h(x1)>h(x2),
∴f(x1)+x1>f(x2)+x2,故④錯(cuò)誤;
故答案為:②③
點(diǎn)評 本題主要考查命題的真假判斷,在求解中用到了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并用到了函數(shù)單調(diào)性的定義.需要學(xué)習(xí)掌握的是構(gòu)造函數(shù)的辦法,綜合性較強(qiáng),有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈($\frac{1}{2}$,+∞),使得x+log2x>0 | B. | ?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0 | ||
C. | ?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0 | D. | ?x∈(-∞,$\frac{1}{2}$],使得x+log2x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正方體的體積與棱長的關(guān)系 | |
B. | 學(xué)生的成績和體重 | |
C. | 路上酒后駕駛的人數(shù)和交通事故發(fā)生的多少 | |
D. | 水的體積和重量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5.28 | B. | 16.32 | C. | 17.28 | D. | 18.72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x+3 | B. | y=x2+3 | C. | y=2x | D. | y=lgx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com