10.在△ABC中,$a=2,b=4,cosC=\frac{3}{8}$,則c=( 。
A.$\sqrt{14}$B.$\sqrt{10}$C.3D.$\sqrt{7}$

分析 直接利用余弦定理,可得結(jié)論.

解答 解:△ABC中,$a=2,b=4,cosC=\frac{3}{8}$,
∴c=$\sqrt{4+16-2×2×4×\frac{3}{8}}$=$\sqrt{14}$,
故選A.

點(diǎn)評(píng) 本題考查余弦定理,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在${({\frac{{\sqrt{x}}}{2}-\frac{2}{{\sqrt{x}}}})^n}$的展開(kāi)式中二項(xiàng)式系數(shù)的和為64,則展開(kāi)式中x2項(xiàng)的系數(shù)為$-\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)集合A={(x,y)|y=f(x)},若對(duì)于任意的(x1,y1)∈A,總存在(x2,y2)∈A,使得x1x2+y1y2=0,則稱集合A具有性質(zhì)P.給定下列4個(gè)集合:
①A1={(x,y)|y=2x }
②A2={(x,y)|y=1+sinx}
③A3={(x,y)|y=(x-1)${\;}^{\frac{1}{3}}$} 
 ④A4═{(x,y)|y=ln|x|}.
其中具有性質(zhì)P的為②③(填對(duì)應(yīng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知冪函數(shù)$f(x)={x^{{m^2}-2m-3}}(m∈Z)$為偶函數(shù),且在區(qū)間(0,+∞)上減函數(shù),則m的值為( 。
A.-1<m<3B.1C.1或2D.0或1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.A,B,C,D四點(diǎn)都在一個(gè)球面上,AB=AC=AD=$\sqrt{2}$,且AB,AC,AD兩兩垂直,則該球的表面積為( 。
A.B.$\sqrt{6}π$C.12πD.$2\sqrt{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示,A、B是邊長(zhǎng)為1的小正方形組成的網(wǎng)格的兩個(gè)頂點(diǎn),在格點(diǎn)中任意放置點(diǎn)C,恰好能使其構(gòu)成△ABC且面積為1的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{9}$C.$\frac{2}{9}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知關(guān)于z的實(shí)系數(shù)一元二次方程z2+5z+a=0的兩個(gè)復(fù)數(shù)根為α、β,試用實(shí)數(shù)a表示|α|+|β|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知直線x+2y-4=0與拋物線${y^2}=\frac{1}{2}x$相交于A,B兩點(diǎn)(A在B上方),O是坐標(biāo)原點(diǎn).
(Ⅰ)求拋物線在A點(diǎn)處的切線方程;
(Ⅱ)試在拋物線的曲線AOB上求一點(diǎn)P,使△ABP的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知冪函數(shù)$y=({{m^2}-m-1}){x^{{m^2}-2m-\frac{1}{3}}}$,當(dāng)x∈(0,+∞)時(shí)為減函數(shù),則該冪函數(shù)的解析式是${x}^{-\frac{1}{3}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案