1.設(shè)集合A={(x,y)|y=f(x)},若對于任意的(x1,y1)∈A,總存在(x2,y2)∈A,使得x1x2+y1y2=0,則稱集合A具有性質(zhì)P.給定下列4個集合:
①A1={(x,y)|y=2x }
②A2={(x,y)|y=1+sinx}
③A3={(x,y)|y=(x-1)${\;}^{\frac{1}{3}}$} 
 ④A4═{(x,y)|y=ln|x|}.
其中具有性質(zhì)P的為②③(填對應(yīng)的序號)

分析 利用定義,對4個選項分別進行判斷,即可得出結(jié)論.

解答 解:①A1={(x,y)|y=2x },取點(0,1),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不正確.
對于②M={(x,y)|y=sinx+1},對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足定義,所以正確.
③A3={(x,y)|y=(x-1)${\;}^{\frac{1}{3}}$},取點(0,-1),(1,0),滿足定義,所以正確.
④A4═{(x,y)|y=ln|x|},如圖取點(1,0),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不正確.

故答案為②③.

點評 本題考查新定義,利用對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本題解答的關(guān)鍵,函數(shù)的基本性質(zhì)的考查,注意存在與任意的區(qū)別.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與拋物線C:y2=2px(p>0)的準線分別交于A,B兩點,O為坐標原點.若雙曲線的離心率為2,△AOB的面積為$\sqrt{3}$
(1)求拋物線C的方程;
(2)過點D(-1,0)的直線l與拋物線C交于不同的兩點E,F(xiàn),若在x軸上存在一點P(x0,0)使得△PEF是等邊三角形,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)設(shè)f(x)=ax+b,且$\int_{\;-1}^{\;1}{{{[{f(x)}]}^2}dx}=2$,求f(a)的取值范圍.
(2)求函數(shù)f(x)=x3-3x過點P(1,-2)的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.${T_n}=({1-\frac{1}{1+2}})({1-\frac{1}{1+2+3}})•…•({1-\frac{1}{1+2+3+…+n}})$=$\frac{(n+1)+2}{3(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短軸長為2$\sqrt{3}$,離心率e=$\frac{1}{2}$,
(1)求橢圓C的標準方程:
(2)若F1、F2分別是橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同的兩點A、B,求△F1AB的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在某市記者招待會上,需要接受本市甲、乙兩家電視臺記者的提問,兩家電視臺均有記者5人,主持人需要從這10名記者中選出4名記者提問,且這4人中,既有甲電臺記者,又有乙電視臺記者,且甲電視臺的記者不可以連續(xù)提問,則不同的提問方式的種數(shù)為(  )
A.1200B.2400C.3000D.3600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知A(-4,3)、B(2,5)、C(6,3)、D(-3,0),則直線AB與直線CD(  )
A.平行B.相交C.垂直D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,$a=2,b=4,cosC=\frac{3}{8}$,則c=( 。
A.$\sqrt{14}$B.$\sqrt{10}$C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知下列命題:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p,q為兩個命題,若“p∨q”為假命題,則“(¬p)∧(¬q)為真命題”;
③“a>2”是“a>5”的充分不必要條件;
④“若xy=0,則x=0且y=0”的逆否命題為真命題.
其中所有真命題的序號是②.

查看答案和解析>>

同步練習冊答案