分析 利用定義,對4個選項分別進行判斷,即可得出結(jié)論.
解答 解:①A1={(x,y)|y=2x },取點(0,1),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不正確.
對于②M={(x,y)|y=sinx+1},對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足定義,所以正確.
③A3={(x,y)|y=(x-1)${\;}^{\frac{1}{3}}$},取點(0,-1),(1,0),滿足定義,所以正確.
④A4═{(x,y)|y=ln|x|},如圖取點(1,0),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不正確.
故答案為②③.
點評 本題考查新定義,利用對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本題解答的關(guān)鍵,函數(shù)的基本性質(zhì)的考查,注意存在與任意的區(qū)別.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1200 | B. | 2400 | C. | 3000 | D. | 3600 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 垂直 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{10}$ | C. | 3 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com