精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
棱錐的底面正方形,側棱的中點在底面內的射影恰好是正方形的中心,頂點在截面的射影恰好是的重心

(1)求直線與底面所成角的正切值;
(2)設,求此四棱錐過點的截面面積.

(1)
(2)
解(1)

兩兩相互垂直, 連結并延長交于F.

 
同理可得
   
          
(2)的重心,    F是SB的中點


梯形的高  
 
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

經過平面外一點,和平面內一點與平面垂直的平面有(  )
A.0個B.1個C.無數個D.1個或無數個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

[理]如圖,在正方體中,是棱的中點,為平面內一點,

(1)證明平面;
(2)求與平面所成的角;
(3)若正方體的棱長為,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD的底面ABCD是邊長為1的菱形,∠BCD﹦60°,E是CD中點,
PA⊥底面ABCD,PA=    
             
(1)證明:平面PBE⊥平面PAB
(2)求二面角A—BE—P的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分10分)

在正方體中,E,F分別是CD,A1D1中點
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點P,使BF⊥平面AEP,若存在,
確定點P的位置;若不存在,說明理由

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.


 
  (I)求證:PD⊥BC;

  (II)求二面角B—PD—C的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題


(本小題滿分5分)直線a,b相交于O,且a,b成角600, 過O與a,b都成600角的直線有(    )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,矩形ABCD,PA⊥平面ABCD,M、N、R分別是AB、PC、CD的中點。
①求證:直線AR∥平面PMC;
②求證:直線MN⊥直線AB。
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PA垂直于底面,E、F分別是AB、PC的中點。 

⑴求證:CD⊥PD;  
⑵求證:EF∥平面PAD;
⑶若直線EF⊥平面PCD,求平面PCD與平面ABCD所成二面角的大小

查看答案和解析>>

同步練習冊答案