【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若,點(diǎn),求的值.
【答案】(1);(2).
【解析】
(1)將曲線的極坐標(biāo)方程化為普通方程,將直線的參數(shù)方程化為普通方程,可知曲線為圓,利用圓心到直線的距離小于半徑,列出關(guān)于實(shí)數(shù)的不等式,解出即可;
(2)將直線的參數(shù)方程化為(為參數(shù)),將該參數(shù)方程與曲線的普通方程聯(lián)立,列出韋達(dá)定理,并利用的幾何意義可計(jì)算出的值.
(1)曲線,故,則,
即,直線,
故圓心到直線的距離,解得,
即實(shí)數(shù)的取值范圍為;
(2)直線的參數(shù)方程可化為(為參數(shù)),
代入中,得.
記、對應(yīng)的參數(shù)分別為、,則,.
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,為等腰直角三角形,為等邊三角形,其中O為BC中點(diǎn),且.
(1)求證:平面平面PBC;
(2)若且平面EBC,其中E為AP上的點(diǎn),求CE與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線、與平面、滿足,,,則下列命題中正確的是( )
A.是的充分不必要條件
B.是的充要條件
C.設(shè),則是的必要不充分條件
D.設(shè),則是的既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1+cos2θ)=8sinθ.
(1)求曲線C的普通方程;
(2)直線l的參數(shù)方程為,t為參數(shù)直線與y軸交于點(diǎn)F與曲線C的交點(diǎn)為A,B,當(dāng)|FA||FB|取最小值時(shí),求直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)僅有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線上任意一點(diǎn)P向x軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線與軌跡c交于兩點(diǎn),T為C上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過x軸上的定點(diǎn)?若過定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,且至少存在兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游樂場過山車軌道在同一豎直鋼架平面內(nèi),如圖所示,矩形的長為130米,寬為120米,圓弧形軌道所在圓的圓心為0,圓O與,,分別相切于點(diǎn)A,D,CT為的中點(diǎn).現(xiàn)欲設(shè)計(jì)過山車軌道,軌道由五段連接而成:出發(fā)點(diǎn)N在線段上(不含端點(diǎn),游客從點(diǎn)Q處乘升降電梯至點(diǎn)N),軌道第一段與圓O相切于點(diǎn)M,再沿著圓孤軌道到達(dá)最高點(diǎn)A,然后在點(diǎn)A處沿垂直軌道急速下降至點(diǎn)O處,接著沿直線軌道滑行至地面點(diǎn)G處(設(shè)計(jì)要求M,O,G三點(diǎn)共線),最后通過制動(dòng)裝置減速沿水平軌道滑行到達(dá)終點(diǎn)R記為,軌道總長度為l米.
(1)試將l表示為的函數(shù),并寫出的取值范圍;
(2)求l最小時(shí)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com