7.某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,則得到體育成績(jī)的折線圖(如圖).
(Ⅰ)體育成績(jī)大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)高一年級(jí)中“體育良好”的學(xué)生人數(shù);
(Ⅱ)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體育成績(jī)?cè)赱60,70)和[80,90)的樣本學(xué)生中隨機(jī)抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績(jī)?cè)赱60,70)的概率.

分析 (Ⅰ)由折線圖知,樣本中體育成績(jī)大于或等于70分的學(xué)生有30人,由此能求出該校高一年級(jí)學(xué)生中,“體育良好”的學(xué)生人數(shù).
(Ⅱ)設(shè)“至少有1人體育成績(jī)?cè)赱60,70)”為事件M,記體育成績(jī)?cè)赱60,70)的學(xué)生為A1,A2,體育成績(jī)?cè)赱80,90)的學(xué)生為B1,B2,B3,由此利用列舉法能求出在抽取的2名學(xué)生中,至少有1人體育成績(jī)?cè)赱60,70)的概率.

解答 解:(Ⅰ)由折線圖知,樣本中體育成績(jī)大于或等于70分的學(xué)生有30人…2分
所以該校高一年級(jí)學(xué)生中,“體育良好”的學(xué)生人數(shù)大約為$1000×\frac{30}{40}=750$人…5分
(Ⅱ)設(shè)“至少有1人體育成績(jī)?cè)赱60,70)”為事件M,
記體育成績(jī)?cè)赱60,70)的學(xué)生為A1,A2,體育成績(jī)?cè)赱80,90)的學(xué)生為B1,B2,B3,
則從這兩組學(xué)生中隨機(jī)抽取2人,所有可能的結(jié)果如下:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3
共10種 …9分
而事件M所包含的結(jié)果有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3
共7種,因此事件M發(fā)生的概率為$\frac{7}{10}$…12分.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.2015年12月10日,我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿素人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為x,y,z,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí),若ω≥4,則長(zhǎng)勢(shì)為一級(jí);若2≤ω≤3,則長(zhǎng)勢(shì)為二級(jí);若0≤ω≤1,則長(zhǎng)勢(shì)為三級(jí),為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨即抽取了10塊青蒿人工種植地,得到如表結(jié)果:
種植地編號(hào)A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
種植地編號(hào)A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)z相同的概率;
(2)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為m,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為n,記隨機(jī)變量X=m-n,求X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,且AD∥BC,∠BAD=90°,PA=AB,M,N分別為PC,PB的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:PN⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}中,a1=-1,且n(an+1-an)=2-an+1(n∈N*),現(xiàn)給出下列4個(gè)結(jié)論:
①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{an}是遞減數(shù)列;
③存在n∈N*,使得(2-a1)+(2-a2)+…+(2-an)>2016;
④存在n∈N*,使得(2-a12+(2-a22+…+(2-an2>2016;
其中正確的結(jié)論的序號(hào)是②③(請(qǐng)寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知a∈R,“函數(shù)y=3x+a-1有零點(diǎn)”是“函數(shù)y=logax在(0,+∞)上為減函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中.既是單調(diào)函數(shù)又是奇函數(shù)的是( 。
A.y=2xB.y=log2xC.y=x2D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=$\frac{1}{2}$sin2x-cos2(x+$\frac{π}{4}$).
(1)若x∈(0,π),求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f($\frac{B}{2}$)=0,b=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC的面積為$\frac{1}{2}$,$AB=1,BC=\sqrt{2}$.
(1)求AC的長(zhǎng);
(2)設(shè)$f(x)={cos^2}x+2\sqrt{3}sinxcosx-{sin^2}x$,若$f(B)=-\sqrt{3}$,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.2016年春節(jié)期間全國(guó)流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:
全額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
頻數(shù)39171182
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在[1,5)∪[-21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m-n|>16”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案