16.某次志愿活動,需要從6名同學(xué)中選出4人負責(zé)A、B、C、D四項工作(每人負責(zé)一項),若甲、乙均不能負責(zé)D項工作,則不同的選擇方案有( 。
A.240種B.144種C.96種D.300種

分析 由題意知這是一個計數(shù)問題,首先利用分步計數(shù)原理做出6個人在4個不同的位置的排列,因為條件中要求甲和乙均不能負責(zé)D項工作,寫出甲和乙有一個人負責(zé)D項工作的結(jié)果數(shù),用所有減去不合題意的,得到結(jié)果.

解答 解:由題意知本題是一個分類計數(shù)問題,從6名學(xué)生中選4人分別負責(zé)A,B,C,D四項不同工作共有6×5×4×3=360種,
甲、乙兩人有一個負責(zé)D項工作有2×5×4×3種,
∴不同的選派方法共有360-120=240種,
故選A

點評 本題考查計數(shù)原理,這回總問題在解題過程中最主要的是看清條件中對于元素的限制,注意寫出是做到不重不漏,本題也可以從正面分類來寫出結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1中,點H是棱B1C1中點,則四邊形BDD1H是( 。
A.平行四邊形B.矩形C.空間四邊形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)設(shè)F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求實數(shù)a的值;
(2)若x≥1時,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)n≥2時且n∈N*時,求證:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩條直線mx+y-n=0與x+my+1=0平行的充要條件是( 。
A.m=1且n≠1B.m=-1且n≠1
C.m=±1D.$\left\{\begin{array}{l}m=1\\ n≠-1\end{array}\right.$或$\left\{\begin{array}{l}m=-1\\ n≠1\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程x-2=($\frac{1}{2}$)x的解的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.命題:對?x∈R,x3-x2+1≤0的否定是$?{x_0}∈R,x_0^3-x_0^2+1>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知Sn為數(shù)列{an}的前n項和滿足an>0,${a_n}^2+2{a_n}=4{S_n}+3$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=2x-3x+4的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在一次聯(lián)考后,某校對甲、乙兩個理科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個理科班全部110人中隨機抽取1人,成績?yōu)閮?yōu)秀的概率為$\frac{3}{11}$.
優(yōu)秀非優(yōu)秀合計
甲班10
乙班30
合計110
(1)請完成右面的列聯(lián)表,根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為成績與班級有關(guān)系?(2)在甲、乙兩個理科班優(yōu)秀的學(xué)生中隨機抽取兩名學(xué)生,用ξ表示抽得甲班的學(xué)生人數(shù),求ξ的分布列.
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+c})({b+d})({a+b})({c+d})}}$
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案