【題目】如圖,三棱柱中,側(cè)面是邊長為2的菱形,且, ,四棱錐的體積為2,點(diǎn)在平面內(nèi)的正投影為,且在上,點(diǎn)在線段上,且.
(Ⅰ)證明:直線平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:(1)通過構(gòu)造輔助線FH,證明為平行四邊形,即借助線線平行證明線面平行;(2)借助底面四邊形的對角線互相垂直,建立空間直角坐標(biāo),利用向量方法求解二面角.
(Ⅰ)解析:
因?yàn)樗睦忮F的體積為2,
即,所以
又,所以即點(diǎn)是靠近點(diǎn)的四等分點(diǎn),
過點(diǎn)作交于點(diǎn),所以,
又,所以且,
所以四邊形為平行四邊形,
所以,所以直線平面.
(Ⅱ)
設(shè)的交點(diǎn)為, 所在直線為軸, 所在直線為軸,過點(diǎn)作平面的垂線為軸,建立空間直角坐標(biāo)系,如圖所示:
設(shè)平面的法向量為,
,則, ,則
,即為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),于,于,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點(diǎn)在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圓 的標(biāo)準(zhǔn)方程為,所以圓心為(0,1),半徑為,圓心關(guān)于直線的對稱點(diǎn)是(1,0),所以圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是,選A.
點(diǎn)睛:本題主要考查圓關(guān)于直線的對稱的圓的方程,屬于基礎(chǔ)題。解答本題的關(guān)鍵是求出圓心關(guān)于直線的對稱點(diǎn),兩圓半徑相同。
【題型】單選題
【結(jié)束】
8
【題目】已知雙曲線的離心率為,焦點(diǎn)是, ,則雙曲線方程為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,四邊形是菱形, ,又平面,
點(diǎn)是棱的中點(diǎn), 在棱上,且.
(1)證明:平面平面;
(2)若平面,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于一點(diǎn),交軸于點(diǎn),過點(diǎn)作的垂線交于另一點(diǎn),若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓: 的左焦點(diǎn)是,離心率為,且上任意一點(diǎn)到的最短距離為.
(1)求的方程;
(2)過點(diǎn)的直線(不過原點(diǎn))與交于兩點(diǎn)、, 為線段的中點(diǎn).
(i)證明:直線與的斜率乘積為定值;
(ii)求面積的最大值及此時(shí)的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com