分析 設(shè)圓心坐標(biāo)為(a,3a),根據(jù)半徑為1且與直線x-y=0相切,得到圓的半徑是點(diǎn)到直線的距離,求出a,寫(xiě)出圓的標(biāo)準(zhǔn)方程.
解答 解:設(shè)圓心坐標(biāo)為(a,3a),則
∵半徑為1且與直線x-y=0相切,
∴圓的半徑是點(diǎn)到直線的距離,
∴r=$\frac{|a-3a|}{\sqrt{2}}$=1,
∴a=±$\frac{\sqrt{2}}{2}$
∴圓的標(biāo)準(zhǔn)方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.
故答案為:(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.
點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,解題的關(guān)鍵是求出圓的半徑,已知圓心和半徑,則圓的標(biāo)準(zhǔn)方程可以寫(xiě)出,本題是一個(gè)基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<k<8,C1與C2的實(shí)軸長(zhǎng)相等 | B. | k<6,C1與C2的實(shí)軸長(zhǎng)相等 | ||
C. | 0<k<8,C1與C2的焦距相等 | D. | k<6,C1與C2的焦距相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-4,-e-$\frac{4}{e+1}$) | B. | (-4,-3) | C. | (-e-$\frac{4}{e+1}$,-3) | D. | (-e-$\frac{4}{e+1}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$,$\frac{3π}{4}$ | B. | $\frac{3π}{4}$,$\frac{5π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{5π}{4}$,$\frac{7π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m≥8或m≤-2 | B. | m≥8 | C. | m≤-2 | D. | -2≤x≤8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com