16.已知圓C的圓心在直線3x-y=0上,半徑為1且與直線x-y=0相切,則圓C的標(biāo)準(zhǔn)方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

分析 設(shè)圓心坐標(biāo)為(a,3a),根據(jù)半徑為1且與直線x-y=0相切,得到圓的半徑是點(diǎn)到直線的距離,求出a,寫(xiě)出圓的標(biāo)準(zhǔn)方程.

解答 解:設(shè)圓心坐標(biāo)為(a,3a),則
∵半徑為1且與直線x-y=0相切,
∴圓的半徑是點(diǎn)到直線的距離,
∴r=$\frac{|a-3a|}{\sqrt{2}}$=1,
∴a=±$\frac{\sqrt{2}}{2}$
∴圓的標(biāo)準(zhǔn)方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.
故答案為:(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,解題的關(guān)鍵是求出圓的半徑,已知圓心和半徑,則圓的標(biāo)準(zhǔn)方程可以寫(xiě)出,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知曲線C1:$\frac{{x}^{2}}{8-k}$-$\frac{{y}^{2}}{4}$=1與C2:$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{6-k}$=1都是雙曲線,則( 。
A.0<k<8,C1與C2的實(shí)軸長(zhǎng)相等B.k<6,C1與C2的實(shí)軸長(zhǎng)相等
C.0<k<8,C1與C2的焦距相等D.k<6,C1與C2的焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)+(m+1)f(x)+m+4=0(m∈R)有四個(gè)相異的實(shí)數(shù)根,則m的取值范圍是( 。
A.(-4,-e-$\frac{4}{e+1}$)B.(-4,-3)C.(-e-$\frac{4}{e+1}$,-3)D.(-e-$\frac{4}{e+1}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若sinα=-$\frac{\sqrt{2}}{2}$,且α∈[0,2π],則α所有可能取得值是( 。
A.$\frac{π}{4}$,$\frac{3π}{4}$B.$\frac{3π}{4}$,$\frac{5π}{4}$C.$\frac{5π}{4}$D.$\frac{5π}{4}$,$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線mx-y-(m-4)=0(m∈R)與線段y=$\frac{4}{3}$x-4(0≤x≤3)恒有公共點(diǎn),則m的取值范圍是( 。
A.m≥8或m≤-2B.m≥8C.m≤-2D.-2≤x≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知直線l:mx+2y+6=0,向量(1-m,1)與l平行,則m的值為( 。
A.-1B.1C.2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.點(diǎn)P在橢圓3x2+y2=12上,OP傾斜角為60°,AB∥OP,A,B在橢圓上且都在x軸上方,求△ABP面積的最大值及此時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.對(duì)任意x∈R,比較x2+x+1與$\frac{3}{4}$的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA=AB,PA⊥平面ABCD,E,F(xiàn)分別是BC,PB的中點(diǎn).
(1)證明:EF∥平面PCD;
(2)求EF與平面PAD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案