分析 設(shè)直線OP的方程為y=$\sqrt{3}$x,代入橢圓方程,求得P的坐標(biāo),再設(shè)直線AB的方程為y=$\sqrt{3}$(x+m)(m>0),代入橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,求得m的范圍,再由弦長(zhǎng)公式可得|AB|,再求P到直線AB的距離,運(yùn)用三角形的面積公式,結(jié)合基本不等式,即可得到最大值及對(duì)應(yīng)的m的值,可得直線AB的方程.
解答 解:設(shè)直線OP的方程為y=$\sqrt{3}$x,代入橢圓方程3x2+y2=12,
可得x=$\sqrt{2}$,y=$\sqrt{6}$,即有P($\sqrt{2}$,$\sqrt{6}$),
設(shè)直線AB的方程為y=$\sqrt{3}$(x+m)(m>0),代入橢圓方程可得,
2x2+2mx+m2-4=0,由△=4m2-8(m2-4)>0,解得0<m<2$\sqrt{2}$,
x1+x2=-m,x1x2=$\frac{1}{2}$(m2-4),
即有|AB|=$\sqrt{1+3}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=2$\sqrt{{m}^{2}-2({m}^{2}-4)}$
=2$\sqrt{8-{m}^{2}}$,
又P到直線AB的距離為d=$\frac{|\sqrt{3}(\sqrt{2}+m)-\sqrt{6}|}{\sqrt{1+3}}$=$\frac{\sqrt{3}}{2}$|m|,
即有S△ABP=$\frac{1}{2}$|AB|•d=$\frac{\sqrt{3}}{2}$|m|•$\sqrt{8-{m}^{2}}$=$\frac{\sqrt{3}}{2}$•$\sqrt{{m}^{2}}$•$\sqrt{8-{m}^{2}}$
≤$\frac{\sqrt{3}}{2}$•$\frac{{m}^{2}+8-{m}^{2}}{2}$=2$\sqrt{3}$,
當(dāng)且僅當(dāng)m2=8-m2,解得m=2,△ABP的面積取得最大值2$\sqrt{3}$,
此時(shí)直線AB的方程為y=$\sqrt{3}$(x+2).
點(diǎn)評(píng) 本題考查橢圓的方程的運(yùn)用,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,考查面積的最大值,注意運(yùn)用基本不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com