A. | [3,4] | B. | [5,7] | C. | [4,6] | D. | [7,8] |
分析 求出原函數(shù)的導(dǎo)函數(shù),求得導(dǎo)函數(shù)的零點(diǎn)1,a-1,然后分1與a-1的大小分析導(dǎo)函數(shù)在不同區(qū)間內(nèi)的符號(hào),從而得到原函數(shù)在不同區(qū)間內(nèi)的單調(diào)性,最后借助于已知條件得到a-1與3和5的關(guān)系,則答案可求.
解答 解:由f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1得f′(x)=x2-ax+a-1,
令f′(x)=0,解得x=1或x=a-1.
當(dāng)a-1≤1,即a≤2時(shí),f′(x)在(1,+∞)上大于0,函數(shù)f(x)在(1,+∞)上為增函數(shù),不合題意;
當(dāng)a-1>1,即a>2時(shí),f′(x)在(-∞,1)上大于0,函數(shù)f(x)在(-∞,1)上為增函數(shù),
f′(x)在(1,a-1)內(nèi)小于0,函數(shù)f(x)在(1,a-1)內(nèi)為減函數(shù),f′(x)在(a-1,+∞)內(nèi)大于0,
函數(shù)f(x)在(a-1,+∞)上為增函數(shù).
依題意應(yīng)有:
當(dāng)x∈(2,3)時(shí),f′(x)<0,
當(dāng)x∈(5,+∞)時(shí),f′(x)>0.
∴3≤a-1≤5,解得4≤a≤6.
∴a的取值范圍是[4,6].
故選:C.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了分類討論的數(shù)學(xué)思想方法,采用了逆向思維方法,解答的關(guān)鍵是對(duì)端點(diǎn)值的取舍,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n(n∈Z) | B. | 2n-1(n∈Z) | C. | 4n+1(n∈Z) | D. | 4n-1(n∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,e4) | D. | (e4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 15 | C. | 29 | D. | 30 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com