4.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在區(qū)間(2,3)內(nèi)為減函數(shù),在區(qū)間(5,+∞)為增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[3,4]B.[5,7]C.[4,6]D.[7,8]

分析 求出原函數(shù)的導(dǎo)函數(shù),求得導(dǎo)函數(shù)的零點(diǎn)1,a-1,然后分1與a-1的大小分析導(dǎo)函數(shù)在不同區(qū)間內(nèi)的符號(hào),從而得到原函數(shù)在不同區(qū)間內(nèi)的單調(diào)性,最后借助于已知條件得到a-1與3和5的關(guān)系,則答案可求.

解答 解:由f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1得f′(x)=x2-ax+a-1,
令f′(x)=0,解得x=1或x=a-1.
當(dāng)a-1≤1,即a≤2時(shí),f′(x)在(1,+∞)上大于0,函數(shù)f(x)在(1,+∞)上為增函數(shù),不合題意;
當(dāng)a-1>1,即a>2時(shí),f′(x)在(-∞,1)上大于0,函數(shù)f(x)在(-∞,1)上為增函數(shù),
f′(x)在(1,a-1)內(nèi)小于0,函數(shù)f(x)在(1,a-1)內(nèi)為減函數(shù),f′(x)在(a-1,+∞)內(nèi)大于0,
函數(shù)f(x)在(a-1,+∞)上為增函數(shù).
依題意應(yīng)有:
當(dāng)x∈(2,3)時(shí),f′(x)<0,
當(dāng)x∈(5,+∞)時(shí),f′(x)>0.
∴3≤a-1≤5,解得4≤a≤6.
∴a的取值范圍是[4,6].
故選:C.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了分類討論的數(shù)學(xué)思想方法,采用了逆向思維方法,解答的關(guān)鍵是對(duì)端點(diǎn)值的取舍,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求曲線$\frac{x^2}{9}+\frac{y^2}{4}=1$經(jīng)過伸縮變換$φ:\left\{{\begin{array}{l}{{x^'}=\frac{1}{3}x}\\{{y^'}=\frac{1}{2}y}\end{array}}\right.$變換后的曲線方程,并說明它表示什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=$\frac{1}{2}$x,則函數(shù)g(x)=f(x)+$\frac{1}{2}$的零點(diǎn)是( 。
A.2n(n∈Z)B.2n-1(n∈Z)C.4n+1(n∈Z)D.4n-1(n∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10…,第n個(gè)三角形數(shù)為$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形數(shù)N(n,4)=n2
五邊形數(shù)N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n
六邊形數(shù)N(n,6)=2n2-n

可以推測N(n,k)的表達(dá)式,由此計(jì)算N(10,16)=660.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1,$\sqrt{6}$a1,S5成等比數(shù)列,則$\frac{{{S_{10}}}}{S_5}$=$\frac{29}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)f'(x),若對(duì)于任意實(shí)數(shù)x,有f'(x)<f(x),且y=f(x)-1為奇函數(shù),則不等式f(x)<ex的解集為( 。
A.(-∞,0)B.(0,+∞)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R).g(x)=x2-2x,若對(duì)任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),則a的取值范圍是a>ln2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為A1D1和CC1的中點(diǎn).
(Ⅰ)求證:EF∥平面ACD1;
(Ⅱ)求證:平面ACD1⊥平面BDD1B1
(Ⅲ)求異面直線EF與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}為等差數(shù)列,且a5+a6=22,a3=7,則a8=( 。
A.11B.15C.29D.30

查看答案和解析>>

同步練習(xí)冊(cè)答案