【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
(1)當(dāng)CF=1時(shí),求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.
【答案】
(1)解:過E作EN⊥AC于N,連接EF,NF,AC1,由直棱柱的性質(zhì)可知,底面ABC⊥側(cè)面A1C
∴EN⊥側(cè)面A1C
NF為EF在側(cè)面A1C內(nèi)的射影
則由 ,得NF∥AC1,又AC1⊥A1C,故NF⊥A1C
由三垂線定理可知EF⊥A1C
(2)解:連接AF,過N作NM⊥AF與M,連接ME
由(1)可知EN⊥側(cè)面A1C,根據(jù)三垂線定理得EM⊥AF
∴∠EMN是二面角C﹣AF﹣E的平面角即∠EMN=θ
設(shè)∠FAC=α則0°<α≤45°,
在直角三角形CNE中,NE= ,在直角三角形AMN中,MN=3sinα
故tanθ= ,又0°<α≤45°∴0<sinα≤
故當(dāng)α=45°時(shí),tanθ達(dá)到最小值,
tanθ= ,此時(shí)F與C1重合.
【解析】(1)過E作EN⊥AC于N,連接EF,NF,AC1 , 根據(jù)面面垂直的性質(zhì)可知NF為EF在側(cè)面A1C內(nèi)的射影,根據(jù) ,得NF∥AC1 , 又AC1⊥A1C,故NF⊥A1C,由三垂線定理可得結(jié)論;(2)連接AF,過N作NM⊥AF與M,連接ME根據(jù)三垂線定理得EM⊥AF,則∠EMN是二面角C﹣AF﹣E的平面角即∠EMN=θ,在直角三角形CNE中,求出NE,在直角三角形AMN中,求出MN,故tanθ= ,根據(jù)α的范圍可求出最小值.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線,與, 各有一個(gè)交點(diǎn),當(dāng)時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng),這兩個(gè)交點(diǎn)重合.
(1)分別說明, 是什么曲線,并求出與的值;
(2)設(shè)當(dāng)時(shí), 與, 的交點(diǎn)分別為,當(dāng), 與, 的交點(diǎn)分別為,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng) 時(shí),求函數(shù)f(x)在[0,k]上的最大值M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,且a+b+c=8.
(1)若a=2,b= ,求cosC的值;
(2)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面積S= sinC,求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某公司的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如圖所示.食堂某天購進(jìn)了 90個(gè)面包,以 (個(gè))(其中)表示面包的需求量, (元)表示利潤.
(1)根據(jù)直方圖計(jì)算需求量的中位數(shù);
(2)估計(jì)利潤不少于100元的概率;
(3)在直方圖的需求量分組中,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場(chǎng)電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入) 問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場(chǎng)的凈收人最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an} 中,a1=1,a2= ,且 (n=2,3,4,…)
(1)求a3、a4的值;
(2)設(shè)bn= (n∈N*),試用bn表示bn+1并求{bn} 的通項(xiàng)公式;
(3)設(shè)cn= (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高為米,它所占水平地面的長為米.該廣告畫最高點(diǎn)到地面的距離為米,最低點(diǎn)到地面距離米.假設(shè)某人眼睛到腳底的距離為米,他豎直站在此電梯上觀看視角為.
(Ⅰ)設(shè)此人到直線的距離為米,試用含的表達(dá)式表示;
(Ⅱ)此人到直線的距離為多少米時(shí),視角最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 , .
(1)求證:平面 平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com