【題目】在某公司的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如圖所示.食堂某天購進(jìn)了 90個(gè)面包,以 (個(gè))(其中)表示面包的需求量, (元)表示利潤(rùn).

(1)根據(jù)直方圖計(jì)算需求量的中位數(shù);

(2)估計(jì)利潤(rùn)不少于100元的概率;

(3)在直方圖的需求量分組中,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的數(shù)學(xué)期望.

【答案】(1)85個(gè);(2) ;(3)142.

【解析】試題分析:1需求量的中位數(shù) (個(gè)

2)由題意可得.

設(shè)利潤(rùn)不少于100元為事件,利潤(rùn)不少于100元時(shí), 可得,由直方圖可知,由此可估計(jì)當(dāng)時(shí)的概率.

(3)由題意,可得利潤(rùn)的取值可為:80,120,160,180,分別求得

,得到利潤(rùn)的分布列,則的數(shù)學(xué)期望可求.

試題解析:1需求量的中位數(shù) (個(gè))(其它解法也給分)

2由題意,當(dāng)時(shí),利潤(rùn),

當(dāng)時(shí),利潤(rùn),

.

設(shè)利潤(rùn)不少于100元為事件,利潤(rùn)不少于100元時(shí),即

,由直方圖可知,當(dāng)時(shí)

所求概率:

(3)由題意,由于

故利潤(rùn)的取值可為:80,120,160,180,

,

故得分布列為:

利潤(rùn)的數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin (2x+ ).
(1)求函數(shù)f(x)的最小正周期及其單調(diào)減區(qū)間;
(2)用“五點(diǎn)法”畫出函數(shù)g(x)=f(x),x∈[﹣ , ]的圖象(完成列表格并作圖),由圖象研究并寫出g(x)的對(duì)稱軸和對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列滿足,

)求的通項(xiàng)公式.

)設(shè)等比數(shù)列滿足 ,問: 與數(shù)列的第幾項(xiàng)相等?

)試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為豐富居民節(jié)日活動(dòng),組織了“迎新春”象棋大賽,已知報(bào)名的選手情況統(tǒng)計(jì)如下表:

組別

總計(jì)

中年組

91

老年組

16

已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人,若對(duì)中年組和老年組分別利用分層抽樣的方法抽取部分報(bào)名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

(1)求表格中的數(shù)據(jù);

(2)若從選出的中年組的選手中隨機(jī)抽取兩名進(jìn)行比賽,求至少有一名女性選手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長(zhǎng)都是4,E是BC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.

(1)當(dāng)CF=1時(shí),求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足對(duì)任意的都有,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),其離心率為.

(1)求橢圓的方程;

(2)直線相交于兩點(diǎn),在軸上是否存在點(diǎn),使為正三角形,若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是 . (填寫所有正確的序號(hào)) ①若sinx+siny= ,則siny﹣cos2x的最大值為
②函數(shù)y=sin(2x+ )的單調(diào)增區(qū)間是[kπ﹣ ,kπ+ ],k∈Z;
③函數(shù)f(x)= 是奇函數(shù);
④函數(shù)y=tan 的最小正周期是π.

查看答案和解析>>

同步練習(xí)冊(cè)答案