20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(an,Sn)在直線y=$\frac{3}{2}$x-$\frac{3}{2}$上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log3an,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

分析 (1)通過(guò)將點(diǎn)(an,Sn)代入直線y=$\frac{3}{2}$x-$\frac{3}{2}$方程可知Sn=$\frac{3}{2}$an-$\frac{3}{2}$,并與Sn-1=$\frac{3}{2}$an-1-$\frac{3}{2}$作差,整理可知an=3an-1(n≥2),進(jìn)而可知數(shù)列{an}是首項(xiàng)、公比均為3的等比數(shù)列,從而可得結(jié)論;
(2)通過(guò)(1)裂項(xiàng)可知$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 解:(1)由已知可得Sn=$\frac{3}{2}$an-$\frac{3}{2}$,
當(dāng)n≥2時(shí),Sn-1=$\frac{3}{2}$an-1-$\frac{3}{2}$,
兩式相減得:an=$\frac{3}{2}$(an-an-1),即an=3an-1(n≥2),
又∵S1=$\frac{3}{2}$a1-$\frac{3}{2}$,即a1=3,
∴數(shù)列{an}是首項(xiàng)、公比均為3的等比數(shù)列,
∴an=3n
(2)由(1)可知bn=log3an=bn=log33n=n,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在平面直角坐標(biāo)系xOy中,設(shè)A、B、C是圓x2+y2=1上相異三點(diǎn).若存在正實(shí)數(shù)λ,μ,使得$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,則(λ-2)22的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.(-∞,2)C.(2,+∞)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=ex+2x-3的零點(diǎn)所在區(qū)間是( 。
A.(-2,-1)B.(-1,0)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=log2(3+x)+log2(3-x).
(1)求函數(shù)f(x)的定義域;
(2)求f(-1),f(1)的值;
(3)判斷函數(shù)f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知Sn為數(shù)列{an}的前n項(xiàng)和,若an(2+sin$\frac{nπ}{2}$)=n(2+cosnπ),且S4n=an2+bn,則a-b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=2x2+5的圖象上一(1,7)及鄰近一點(diǎn)(1+△x,7+△y),則$\frac{△y}{△x}$=(  )
A.△2xB.4△xC.2△x+4D.4△x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.sin80°sin40°-cos80°cos40°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,已知cosA=$\frac{1}{4}$,若a=4,b+c=6,b<c,b,c的角C的余弦值是方程5x2+7x-6=0的根,求第三邊長(zhǎng)c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.-1290°角所在的象限為第二象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案