【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.

(1)求矩形的外接圓的方程;

(2)已知直線),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.

【答案】解:(1)由,點在邊所在的直線上

所在直線的方程是:

矩形ABCD的外接圓的方程是:

2)直線的方程可化為:

可看作是過直線的交點的直線系,恒過定點知點在圓內(nèi),所以與圓恒相交,

設(shè)與圓的交點為, 的距離)

設(shè)的夾角為,則當(dāng)時, 最大, 最短此時的斜率為的斜率的負倒數(shù): 的方程為

【解析】試題分析:由且點在邊所在的直線上得直線的方程,聯(lián)立直線方程得交點的坐標,則題意可知矩形外接圓圓心為,半徑,可得外接圓方程;(2)由可知恒過點,求得,可證與圓相交,求得與圓相交時弦長,經(jīng)檢驗, 時弦長最短,可得,進而得,最后可得直線方程.

試題解析:(1,點在邊所在的直線上,

所在直線的方程是,即

矩形的外接圓的方程是

2)證明:直線的方程可化為,

可看作是過直線的交點的直線系,即恒過定點,

知點在圓內(nèi),所以與圓恒相交,

設(shè)與圓的交點為的距離),

設(shè)的夾角為,則,當(dāng)時, 最大, 最短.

此時的斜率為的斜率的負倒數(shù),即,故的方程為,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),.

(1)若的圖象在處的切線恰好也是圖象的切線.

①求實數(shù)的值;

②若方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.

(2)當(dāng)時,求證:對于區(qū)間上的任意兩個不相等的實數(shù), ,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項公式;

(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形所在的平面, 分別為的中點, .

(1)求證: 平面;

(2)求與面所成角大小的正弦值;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①分類變量的隨機變量越大,說明“有關(guān)系”的可信度越大.

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.

③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,

.正確的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)的解析式為f(x)= .

(1)判斷并證明f(x)在(0,+∞)上的單調(diào)性;

(2)求當(dāng)x<0時,函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)若曲線在點處的切線的斜率為5,求的值;

(2)若函數(shù)的最小值為,求的值;

(3)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)若 ,求當(dāng)下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

同步練習(xí)冊答案