2.函數(shù)f(x)=2x-2-x的圖象( 。
A.關(guān)于y軸對稱B.關(guān)于原點(diǎn)對稱C.關(guān)于x軸對稱D.關(guān)于直線y=x對稱

分析 根據(jù)條件判斷函數(shù)的奇偶性即可得到結(jié)論.

解答 解:∵f(-x)=2-x-2x=-f(x),
∴函數(shù)f(x)是奇函數(shù),
則函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱,
故選:B.

點(diǎn)評 本題主要考查函數(shù)圖象對稱性的判斷,根據(jù)函數(shù)奇偶性的定義判斷函數(shù)的奇偶性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)C在線段AB上,且$\overrightarrow{AC}$=$\frac{2}{7}$$\overrightarrow{CB}$,則( 。
A.$\overrightarrow{AB}$=$\frac{7}{5}\overrightarrow{BC}$B.$\overrightarrow{AB}$=-$\frac{7}{5}\overrightarrow{BC}$C.$\overrightarrow{AB}$=$\frac{9}{7}\overrightarrow{BC}$D.$\overrightarrow{AB}$=-$\frac{9}{7}\overrightarrow{BC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若y=f(x)在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是( 。
A.若f(a)•f(b)<0,不存在實(shí)數(shù)c∈(a,b),使得f(c)=0
B.若f(a)•f(b)<0,存在且只存在一個(gè)實(shí)數(shù)c∈(a,b),使得f(c)=0
C.若f(a)•f(b)>0,不存在實(shí)數(shù)c∈(a,b),使得f(c)=0
D.若f(a)•f(b)>0,有可能存在實(shí)數(shù)c∈(a,b),使得f(c)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)y=2x的圖象先向下平移2個(gè)單位,得到的函數(shù)表達(dá)式為y=2x-2,然后繼續(xù)向左平移1個(gè)單位,最終得到的函數(shù)表達(dá)式又為y=2x+1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\overrightarrow a$=(0,-1),$\overrightarrow b$=(2,2),|λ$\overrightarrow a$+$\overrightarrow b$|=2,則λ的值為( 。
A.1+$\sqrt{2}$B.$\sqrt{2}$-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=xe1-2x,則f′(1)=$-\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間[0,+∞)上單調(diào)遞增的是( 。
A.x-2B.|lnx|C.x3D.2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對邊分別為a、b、c,若cosBcosC-sinBsinC=$\frac{1}{2}$.
(1)求角A;
(2)若a=2$\sqrt{3}$,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若z+3-2i=4+i,則z等于(  )
A.1+iB.1+3iC.-1-iD.-1-3i

查看答案和解析>>

同步練習(xí)冊答案