8.下列各組函數(shù)為同一函數(shù)的是( 。
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=$\sqrt{x}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}+x}$
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x≤0}\end{array}\right.$

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù).

解答 解:對于A,函數(shù)f(x)=x(x∈R),與g(x)=${(\sqrt{x})}^{2}$=x(x≥0)的定義域不同,∴不是同一函數(shù);
對于B,函數(shù)f(x)=$\sqrt{x}$•$\sqrt{x+1}$=$\sqrt{{x}^{2}+x}$(x≥0),與g(x)=$\sqrt{{x}^{2}+x}$(x≥1或x≤-1)的定義域不同,∴不是同一函數(shù);
對于C,函數(shù)f(x)=1(x∈R),與g(x)=x0=1(x≠0)的定義域不同,∴不是同一函數(shù);
對于D,函數(shù)f(x)=|x|=$\left\{\begin{array}{l}{x,x>0}\\{-x,x≤0}\end{array}\right.$,與g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x≤0}\end{array}\right.$的定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù).
故選:D.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知tanα=3,且α是第一象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{x}{x+1}$.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若點P(1,1)在圓x2+y2+(λ-1)x+2λy+λ=0外,則λ的取值范圍是{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若用列舉法表示集合A={x|x<5,x∈N*},則集合A={1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.橢圓2x2+3y2=1的焦點坐標(biāo)為$(±\frac{{\sqrt{6}}}{6},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在平面四邊形ABCD中,若AB=2,CD=3,則$({\overrightarrow{AC}+\overrightarrow{DB}})•({\overrightarrow{AB}+\overrightarrow{CD}})$=( 。
A.-5B.0C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知一組數(shù)據(jù)x1,x2,x3,…,xn的方差是a,那么另一組數(shù)據(jù)x1-2,x2-2,x3-2,…,xn-2的方差是a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1(-3,0)、F2(3,0),直線y=kx與橢圓交于A、B兩點.
(1)若三角形AF1F2的周長為$4\sqrt{3}+6$,求橢圓的標(biāo)準(zhǔn)方程;
(2)若$2\sqrt{3}<a<3\sqrt{2}$,且以AB為直徑的圓過橢圓的右焦點,求直線y=kx斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案