15.在半徑為R的球內(nèi)截取一個(gè)最大的圓柱,則其體積之比V圓柱:V的比值為$\frac{{\sqrt{3}}}{3}$.

分析 本題考查的知識(shí)點(diǎn)是棱柱、棱錐、棱臺(tái)的體積,為求出圓柱體積最大時(shí)的底面半徑,我們可以設(shè)圓柱體的底面半徑為r,進(jìn)而根據(jù)截面圓半徑、球半徑、球心距滿足勾股定理,可得R2=r2+$\frac{{h}^{2}}{4}$,進(jìn)而得到其體積的表達(dá)式,然后結(jié)合基本不等式,得到圓柱體積最大時(shí)的底面半徑的值,即可求出V圓柱:V

解答 解:設(shè)圓柱體的底面半徑為r,高為h,則R2=r2+$\frac{{h}^{2}}{4}$,
∴R2=r2+$\frac{{h}^{2}}{4}$=$\frac{1}{2}$r2+$\frac{1}{2}$r2+$\frac{{h}^{2}}{4}$≥3$\root{3}{\frac{1}{16}{r}^{4}{h}^{2}}$,
∴r2h≤$\frac{4}{9}\sqrt{3}{R}^{3}$
∴圓柱的體積V=πr2h≤$\frac{4}{9}\sqrt{3}{R}^{3}$
當(dāng)且僅當(dāng)r2=$\frac{1}{2}$h2,即h=$\frac{2\sqrt{3}}{3}$R,r=$\frac{\sqrt{6}}{3}$R時(shí),V取最大值$\frac{4}{9}\sqrt{3}{R}^{3}$.
∵V=$\frac{4}{3}π{R}^{3}$,
∴V圓柱:V=$\frac{{\sqrt{3}}}{3}$,
故答案為:$\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 若球的截面圓半徑為r,球心距為d,球半徑為R,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,即R2=r2+d2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:?x∈[2,4],x2-2x-2a≤0恒成立,命題q:f(x)=x2-ax+1在區(qū)間$[{\frac{1}{2},+∞})$上是增函數(shù).若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平面內(nèi)三點(diǎn)A,B,C滿足|$\overrightarrow{AB}$|=|$\overrightarrow{CA}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$為( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$與向量$\overrightarrow a$反向,求$\overrightarrow c$的坐標(biāo);
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$與$\overrightarrow b$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列選項(xiàng)中,說法正確的是(  )
A.已知命題p和q,若“p∨q”為假命題,則命題p和q中必一真一假
B.命題“?c∈R,方程2x2+y2=c表示橢圓”的否定是“?c∈R,方程2x2+y2=c不表示橢圓”
C.命題“若k<9,則方程“$\frac{x^2}{25-k}$+$\frac{y^2}{k-9}$=1表示雙曲線”是假命題
D.命題“在△ABC中,若sinA<$\frac{1}{2}$,則A<$\frac{π}{6}$”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求證:當(dāng)x<2時(shí),x3-6x2+12x-1<7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a,b∈R,且a<b,則下列等式成立的是( 。
A.a2>b2B.|a|>|b|C.lg(a-b)>0D.($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=ax+lnx的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=2sin(2x+θ+$\frac{π}{3}$)
(1)若0≤θ≤π,求θ,使函數(shù)f(x)是偶函數(shù);
(2)在(1)成立的條件下,求滿足f(x)=1,其中x∈[-π,π]的x的取值集合.

查看答案和解析>>

同步練習(xí)冊答案