20.求證:當(dāng)x<2時(shí),x3-6x2+12x-1<7.

分析 由x<2,運(yùn)用作差,因式分解,結(jié)合不等式的性質(zhì),即可證明.

解答 證明:由x<2,可得
x3-6x2+12x-1-7
=(x3-8)-(6x2-12x)
=(x-2)(x2+2x+4)-6x(x-2)
=(x-2)(x2-4x+4)=(x-2)3<0,
則有x<2時(shí),x3-6x2+12x-1<7.

點(diǎn)評 本題考查不等式的證明,注意運(yùn)用作差和因式分解,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,且$\overrightarrow{a}$與$\overrightarrow$夾角為120°,則($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓心在原點(diǎn),半徑為R的圓與△ABC的邊有公共點(diǎn),其中A(4,0),B(6,8),C(2,4),則R的取值范圍是$[\frac{{8\sqrt{5}}}{5},\;10]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“4<k<6”是“方程$\frac{x^2}{6-k}$+$\frac{y^2}{k-4}$=1表示橢圓”的(  )
A.既不充分也不必要條件B.充分不必要條件
C.充要條件D.必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在半徑為R的球內(nèi)截取一個(gè)最大的圓柱,則其體積之比V圓柱:V的比值為$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)F1、F2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{t{a}^{2}}$=1(a>0,t>0)的左、右焦點(diǎn),過F1且且傾斜角為30°的直線與雙曲線的右支相交于點(diǎn)P,若|PF2|=|F1F2|,則t=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)虛軸上的端點(diǎn)B(0,b),右焦點(diǎn)F,若以B為圓心的圓與C的一條漸近線相切于點(diǎn)P,且$\overrightarrow{BP}$$∥\overrightarrow{PF}$,則該雙曲線的離心率為( 。
A.$\sqrt{5}$B.2C.$\frac{1+\sqrt{3}}{2}$D.$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知有一反比例函數(shù)y=(a-3)x${\;}^{{a}^{2}-5a+5}$和一次函數(shù)y=x+a+1的圖象交于A,B兩點(diǎn),求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=lnx-ax2+x有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(-∞,1)C.(-∞,$\frac{1+e}{{e}^{2}}$)D.(0,$\frac{1+e}{{e}^{2}}$)

查看答案和解析>>

同步練習(xí)冊答案