分析:解法一:
(Ⅰ)假設(shè)存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列,則有
b22=b1b3,由此能求出存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列.
(Ⅱ)由(Ⅰ)知
an+1+an=4×2n-1=2n+1(n≥1),由此能求出數(shù)列{a
n}的前n項(xiàng)和.
解法二:
(Ⅰ)假設(shè)存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列,設(shè)
=q(n≥2),即a
n+1=(q-λ)a
n+qλa
n-1.由此能求出存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列.
(Ⅱ)由(Ⅰ)知
an=[2n+1+(-1)n].從而
Sn=[(22-1)+(23+1)+(24-1)+(25+1)+…+(2n+(-1)n-1)+(2n+1+(-1)n)],由此能求出數(shù)列{a
n}的前n項(xiàng)和.
解答:
解法一:
(Ⅰ)假設(shè)存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列,
則有
b22=b1b3.①
由a
1=1,a
2=3,且a
n+1=a
n+2a
n-1,得a
3=5,a
4=11.
所以b
1=a
2+λa
1=3+λ,b
2=a
3+λa
2=5+3λ,b
3=a
4+λa
3=11+5λ,
所以(5+3λ)
2=(3+λ)(11+5λ),解得λ=1或λ=-2.
當(dāng)λ=1時(shí),b
n=a
n+1+a
n,b
n-1=a
n+a
n-1,且b
1=a
2+a
1=4,
有
===2(n≥2).
當(dāng)λ=-2時(shí),b
n=a
n+1-2a
n,b
n-1=a
n-2a
n-1,且b
1=a
2-2a
1=1,
有
===-1(n≥2).
所以存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列.
當(dāng)λ=1時(shí),數(shù)列{b
n}為首項(xiàng)是4、公比是2的等比數(shù)列;
當(dāng)λ=-2時(shí),數(shù)列{b
n}為首項(xiàng)是1、公比是-1的等比數(shù)列.
(Ⅱ)由(Ⅰ)知
an+1+an=4×2n-1=2n+1(n≥1),
當(dāng)n為偶數(shù)時(shí),S
n=(a
1+a
2)+(a
3+a
4)+(a
5+a
6)+…+(a
n-1+a
n)
=2
2+2
4+2
6+…+2
n=
=(2n+2-4).
當(dāng)n為奇數(shù)時(shí),S
n=a
1+(a
2+a
3)+(a
4+a
5)+…+(a
n-1+a
n)
=1+2
3+2
5+…+2
n=
1+=(2n+2-5).
故數(shù)列{a
n}的前n項(xiàng)和
Sn= | (2n+2-4),n為偶數(shù) | (2n+2-5),n為奇數(shù). |
| |
∴
Sn=[(2n+2-4)+].
解法二:
(Ⅰ)假設(shè)存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列,
設(shè)
=q(n≥2),即a
n+1+λa
n=q(a
n+λa
n-1),
即a
n+1=(q-λ)a
n+qλa
n-1.
與已知a
n+1=a
n+2a
n-1比較,
令
解得λ=1或λ=-2.
所以存在實(shí)數(shù)λ,使數(shù)列{b
n}為等比數(shù)列.
當(dāng)λ=1時(shí),數(shù)列{b
n}為首項(xiàng)是4、公比是2的等比數(shù)列;
當(dāng)λ=-2時(shí),數(shù)列{b
n}為首項(xiàng)是1、公比是-1的等比數(shù)列.
(Ⅱ):由(Ⅰ)可知,
| an+1+an=4×2n-1 | an+1-2an=1×(-1)n-1. |
| |
所以
an=[2n+1+(-1)n].
則
Sn=[(22-1)+(23+1)+(24-1)+(25+1)+…+(2n+(-1)n-1)+(2n+1+(-1)n)],
當(dāng)n為偶數(shù)時(shí),
Sn=(22+23+24+25+…+2n+2n+1)=
×=(2n+2-4).
當(dāng)n為奇數(shù)時(shí),
Sn=[(22+23+24+25+…+2n+2n+1)-1]=
×[-1]=(2n+2-5).
故數(shù)列{a
n}的前n項(xiàng)和
Sn= | (2n+2-4),n為偶數(shù) | (2n+2-5),n為奇數(shù). |
| |
∴
Sn=[(2n+2-4)+].