已知集合A={-2,0,2},B={-1,1},設(shè)M={(x,y)|x∈A,y∈B},在集合M內(nèi)隨機(jī)取出一個(gè)元素(x,y).
(1)求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=1上的概率
(2)求以(x,y)為坐標(biāo)的點(diǎn)位于區(qū)域D:
x-y+2≥0
x+y-2≤0
y≥-1
內(nèi)(含邊界)的概率.
考點(diǎn):幾何概型,古典概型及其概率計(jì)算公式
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)直接列舉基本事件,即可求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=1上的概率;
(2)由(1)可先求滿足條件的集合M中的元素個(gè)數(shù),把所有元素分別代入到區(qū)域D所滿足的不等式組求出區(qū)域D含有集合M中的元素,代入古典概率的計(jì)算公式可求
解答: 解:集合M 的所有元素有(-2,-1),(-2,1),(0,-1),(0,1),(2,-1),(2,1)共6個(gè),即基本事件總數(shù)為6.-------------(4分)
(1)記“以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=1上”為事件A,
因落在圓x2+y2=1上的點(diǎn)有(0,-1),(0,1)共2個(gè),
即A包含的基本事件數(shù)為2,--------(7分)
所以所求概率為
2
6
=
1
3
--------------------------------------------------------------(8分)
(2)記“以(x,y)為坐標(biāo)的點(diǎn)位于區(qū)域D內(nèi)”為事件B.
由右圖知位于區(qū)域D內(nèi)(含邊界)的點(diǎn)有:(-2,-1),(2,-1),
(0,-1),(0,1)共4個(gè),即B包含的基本事件數(shù)為4,---------------(11分)
故P(B)=
4
6
=
2
3
.---------------------------------------(12分)
點(diǎn)評(píng):本題是古典概率的計(jì)算,屬于基礎(chǔ)試題.解題的關(guān)鍵是要準(zhǔn)確、全面的找出公式中的m,n的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
,
c
是同一平面內(nèi)的三個(gè)向量,其中
a
=(2,2),
b
=(-3,4).
(Ⅰ)若
c
=(8,1),且(
a
-2
b
)∥(k
a
+
c
),求實(shí)數(shù)k的值;
(Ⅱ)若|
c
|=2,且
a
c
的夾角為45°.求證:(
1
2
a
-
c
)⊥
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面A1ACC1是邊長為2的菱形,∠A1AC=60°.在面ABC中,AB=2
3
,BC=4,M為BC的中點(diǎn),過A1,B1,M三點(diǎn)的平面交AC于點(diǎn)N.
(1)求證:N為AC中點(diǎn);
(2)平面A1B1MN⊥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R)
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在(2,f(2))處的切線方程;
(2)當(dāng)0≤a≤1時(shí),試討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=4y的焦點(diǎn)為F,準(zhǔn)線為l,過l上一點(diǎn)P作拋物線的兩切線,切點(diǎn)分別為A、B,
(1)求證:PA⊥PB;
(2)求證:A、F、B三點(diǎn)共線;
(3)求
FA
FB
FP
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為1的定圓⊙P的圓心P到定直線l的距離為2,Q是l上一動(dòng)點(diǎn),⊙Q與⊙P相外切,⊙Q交l于M、N兩點(diǎn),對(duì)于任意直徑MN,平面上恒有一定點(diǎn)A,使得∠MAN為定值.求∠MAN的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(1,0)的距離與點(diǎn)P到定直線l:x=4的距離之比為
1
2

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M、N是直線l上的兩個(gè)點(diǎn),點(diǎn)E與點(diǎn)F關(guān)于原點(diǎn)O對(duì)稱,若
EM
FN
=0,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C是以點(diǎn)C(2,-
π
6
)為圓心、2為半徑的圓.
(1)求圓C的極坐標(biāo)方程;
(2)求圓C被直線l:θ=-
12
所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AC⊥平面CDE,BD∥AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點(diǎn),CD=BD=2AC=2 
(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F-ABE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案