A. | $\frac{\sqrt{10}}{8}$ | B. | $\frac{\sqrt{6}}{4}$ | C. | $\frac{\sqrt{10}}{4}$ | D. | $\frac{\sqrt{6}}{8}$ |
分析 記∠CBD=α,∠ABD=β,由正弦定理可得:$\frac{sinβ}{sinα}$=$\frac{sinA}{sinC}$,進(jìn)而利用三角函數(shù)恒等變換的應(yīng)用可求cosC=2sinβ,又cosC=cos(α+β)=cosαcosβ-sinαsinβ,進(jìn)而解得sin∠ABD的值.
解答 解:記∠CBD=α,∠ABD=β,由題意sinα=$\frac{1}{4}$,
在△BCD中,由正弦定理可得:$\frac{CD}{sinα}$=$\frac{BD}{sinC}$,
在△ABD中,由正弦定理可得:$\frac{AD}{sinβ}=\frac{AD}{sinA}=\frac{BD}{sinA}$,
兩式相除可得:$\frac{sinβ}{sinα}$=$\frac{sinA}{sinC}$,
即sinβ=$\frac{sinA}{4sinC}$=$\frac{sin(π-2C)}{4sinC}$=$\frac{sin2C}{4sinC}$=$\frac{2sinCcosC}{4sinC}$=$\frac{cosC}{2}$,
變形可得cosC=2sinβ,
又cosC=cos(α+β)=cosαcosβ-sinαsinβ,
可得:2sinβ=$\frac{\sqrt{15}}{4}$cosβ-$\frac{1}{4}$sinβ,即$\sqrt{15}$cosβ=9sinβ,
上式平方可得15cos2β=81sin2β,即cos2β=$\frac{81}{15}$sin2β,
又∵cos2β+sin2β=1,
∴$\frac{96}{15}$sin2β=1,解得sinβ=$\frac{\sqrt{10}}{8}$,即sin∠ABD=$\frac{\sqrt{10}}{8}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 88cm3 | B. | 104m3 | C. | 98m3 | D. | 134m3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12π | B. | 24π | C. | 36π | D. | 48π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com