【題目】設(shè)拋物線C:與直線交于A、B兩點.

1)當(dāng)取得最小值為時,求的值.

2)在(1)的條件下,過點作兩條直線PM、PN分別交拋物線CM、NM、N不同于點P)兩點,且的平分線與軸平行,求證:直線MN的斜率為定值.

【答案】12)證明見解析,定值.

【解析】

1)先確定直線過拋物線焦點,再根據(jù)拋物線定義求,最后根據(jù)最小值求的值;

2)先確定PM、PN的斜率互為相反數(shù),再設(shè)直線PM方程,與拋物線聯(lián)立解得M坐標(biāo),類似可得N點坐標(biāo),最后利用斜率公式求結(jié)果.

1)由題意知:直線過定點,該點為拋物線焦點.

聯(lián)立,消去得:

設(shè),

,

,當(dāng)時,

,解得

2)證明:由已知可知直線PM、PN的斜率存在,且互為相反數(shù)

設(shè),直線PM的方程為.

聯(lián)立,消去x整理得:.

4為方程的一個根,所以,得

同理可得

所以直線MN的斜率為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.

1)求橢圓C的方程;

2)設(shè)直線上與橢圓C交于A,B兩點,點,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自新型冠狀病毒疫情爆發(fā)以來,人們時刻關(guān)注疫情,特別是治愈率,治愈率累計治愈人數(shù)/累計確診人數(shù),治愈率的高低是戰(zhàn)役的重要數(shù)據(jù),由于確診和治愈人數(shù)在不斷變化,那么人們就非常關(guān)心第天的治愈率,以此與之前的治愈率比較,來推斷在這次戰(zhàn)役中是否有了更加有效的手段,下面是一段計算治愈率的程序框圖,請同學(xué)們選出正確的選項,分別填入①②兩處,完成程序框圖.

:第天新增確診人數(shù);:第天新增治愈人數(shù);:第天治愈率

A.,B.,

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個結(jié)論:

①若上是奇函數(shù),則上也是奇函數(shù)

②若不是正弦函數(shù),則不是周期函數(shù)

,則.”的否命題是,則.”

④若,則的充分不必要條件

其中正確結(jié)論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點的個數(shù);

2)若有兩個極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《烏鴉喝水》是《伊索寓言》中一個寓言故事,通過講述已知烏鴉喝水的故事,告訴人們遇到困難要運用智慧,認(rèn)真思考才能讓問題迎刃而解的道理,如圖所示,烏鴉想喝水,發(fā)現(xiàn)有一個錐形瓶,上面部分是圓柱體,下面部分是圓臺,瓶口直徑為厘米,瓶底直徑為厘米,瓶口距瓶頸為厘米,瓶頸到水位線距離和水位線到瓶底距離均為厘米,現(xiàn)將顆石子投入瓶中,發(fā)現(xiàn)水位線上移厘米,若只有當(dāng)水位線到達瓶口時烏鴉才能喝到水,則烏鴉共需要投入的石子數(shù)量至少是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個動點,DC垂直于半圓O所在的平面,DCEB,DCEB1,AB4.

1)證明:平面ADE⊥平面ACD

2)當(dāng)C點為半圓的中點時,求二面角DAEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績誰更好?

2)將同學(xué)乙的成績的頻率分布直方圖補充完整;

3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,設(shè)選出的2個成績中含甲的成績的個數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案