【題目】指出下列各組集合之間的關系:
(1);
(2);
(3);
(4),或;
(5),.
【答案】(1);(2);(3);(4);(5).
【解析】
(1)中集合用不等式表示,可以根據范圍直接判斷; (2)根據集合表示數集的意義進行判斷;
(3)解集合中方程得到集合,再根據集合中分別為奇數、偶數得到集合B進行判斷;(4)可以根據集合元素的特征或者集合的幾何意義判斷;
(5)將中x關于的關系式,改寫成中的形式再進行判斷.
(1)集合B中的元素都在集合A中,但集合A中有些元素(比如0,)不在集合B中,故.
(2)∵A是偶數集,B是4的倍數集,∴.
(3).
在B中,當n為奇數時,,
當n為偶數時,,
∴,∴.
(4(方法一)由得或;
由或得,從而.
(方法二)集合A中的元素是平面直角坐標系中第一、三象限內的點,集合B中的元素也是平面直角坐標系中第一、三象限內的點,
從而.
(5)對于任意,有.
∵,∴,
∴.
由子集的定義知,.
設,此時,解得.
∵在時無解,
∴.
綜上所述,.
科目:高中數學 來源: 題型:
【題目】一次數學會議中,有五位教師來自三所學校,其中學校有位,學校有位,學校有位。現(xiàn)在五位老師排成一排照相,若要求來自同一學校的老師不相鄰,則共有_______種不同的站隊方法.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若實數滿足,則稱比接近
(1)若4比接近0,求的取值范圍;
(2)對于任意的兩個不等正數,求證:比接近;
(3)若對于任意的非零實數,實數比接近,求的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線過點.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(a∈R).
(1)若曲線y=f(x)在x=e處切線的斜率為﹣1,求此切線方程;
(2)若f(x)有兩個極值點x1,x2,求a的取值范圍,并證明:x1x2>x1+x2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:“若,則關于x的不等式的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個數是( )
A.0B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.
(1)求點P的軌跡方程;
(2)設點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com