12.設數(shù)列{an}的前n項和為S,若Sn+1,Sn+2,Sn+3成等差數(shù)列,且a2=-2,則a7=( 。
A.16B.32C.64D.128

分析 由題意得Sn+2+Sn+1=2Sn,得an+2=-2an+1,從而得到{an}從第二項起是公比為-2的等比數(shù)列,由此能求出結(jié)果.

解答 解:∵數(shù)列{an}的前n項和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,且a2=-2,
∴由題意得Sn+2+Sn+1=2Sn,得an+2+an+1+an+1=0,即an+2=-2an+1,
∴{an}從第二項起是公比為-2的等比數(shù)列,
∴a7=a2q5=64.
故選:C.

點評 本題考查等差數(shù)列的某項,解題時要認真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.(x+2)(x-$\frac{1}{x}$)6的展開式中,常數(shù)項是-40(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC,且a>c,cosB=$\frac{1}{4}$,則$\frac{a}{c}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.為推行“新課堂”教學法,某化學教師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中個隨機抽取20名學生的成績進行統(tǒng)計,結(jié)果如表:記成績不低于70分者為“成績優(yōu)良”.
 分數(shù)[50,59)[60,69)[70,79)[80,89)[90,100]
 甲班頻數(shù) 5 6 4 4 1
 乙班頻數(shù) 1 3 6 5 5
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷“成績優(yōu)良與教學方式是否有關”?
  甲班 乙班 總計
 成績優(yōu)良   
 成績不優(yōu)良   
 總計   
附:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
臨界值表:
 P(K2≥k) 0.10 0.05 0.025 0.010
 k 2.706 3.841 5.024 6.635
(2)現(xiàn)從上述40人中,學校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.復數(shù)z=$\frac{10-5{i}^{5}}{1+2{i}^{3}}$在復平面上對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某小學對五年級的學生進行體質(zhì)測試,已知五年級一班共有學生30人,測試立定跳遠的成績用莖葉圖表示如下(單位:cm):
男生成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下(不包括175cm)定義為“不合格”;
女生成績在165cm以上(包括165cm)定義為“合格”,成績在165cm以下(不包括165cm)定義為“不合格”
(Ⅰ)在五年級一班男生中任意選取3人,求至少有2人的成績是合格的概率;
(Ⅱ)若從五年級一班成績“合格”的學生中選取2人參加復試,用X表示其中男生的人數(shù),寫出X的分布列,并求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.甲、乙兩市都位于長江下游,根據(jù)一百多年來的氣象記錄,知道一年中下雨天的比例甲市占20%,乙市占18%,兩地同時下雨占12%,記P(A)=0.20,P(B)=0.18,P(AB)=0.12,則P(A|B)=$\frac{2}{3}$,P(B|A)=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.2016年3月,韓國著名圍棋棋手李世石與谷歌A1phaGo的人機大戰(zhàn)賽在韓國首爾舉行,比賽中采取五局分勝負的方式(即下完五局),獲勝者將獲得100萬美元的獎勵,假設在每局比賽中AlphaGo獲勝的概率是$\frac{2}{3}$,李世石獲勝的概率是$\frac{1}{3}$.
(I)求比賽結(jié)果為谷歌A1ph8Go以4:1獲勝的概率;
(Ⅱ)若將比賽規(guī)則改為一方獲得三局勝利后就贏得并結(jié)束比賽.設X表示比賽的局數(shù),求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知全集U=R,集合A={x|lgx≤0},B={x|2x≤$\root{3}{2}$},則A∩B=( 。
A.(-∞,1]B.(0,$\frac{1}{3}$]C.[$\frac{1}{3}$,1]D.

查看答案和解析>>

同步練習冊答案