分析 (1)由分段函數(shù),代入數(shù)值,計(jì)算即可得到所求,注意運(yùn)用對(duì)數(shù)的性質(zhì)和恒等式;
(2)由題意可得,$\left\{\begin{array}{l}{{2}^{-x}≤2}\\{x<1}\end{array}\right.$或$\left\{\begin{array}{l}{lo{g}_{4}x≤2}\\{x≥1}\end{array}\right.$,運(yùn)用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,解出它們,再求交集即可得到所求不等式的解集.
解答 解:(1)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}(x<1)}\\{lo{g}_{4}x(x≥1)}\end{array}\right.$,
可得f(0)=20=1,f(2)=log42=$\frac{1}{2}$,
f(3)=log43<1,f(f(3))=2-log43=${4}^{\frac{1}{2}lo{g}_{4}\frac{1}{3}}$=${4}^{lo{g}_{4}\frac{\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{3}$;
(2)由題意可得$\left\{\begin{array}{l}{{2}^{-x}≤2}\\{x<1}\end{array}\right.$或$\left\{\begin{array}{l}{lo{g}_{4}x≤2}\\{x≥1}\end{array}\right.$,
即為$\left\{\begin{array}{l}{-x≤1}\\{x<1}\end{array}\right.$或$\left\{\begin{array}{l}{0<x≤16}\\{x≥1}\end{array}\right.$,
即有-1≤x<1或1≤x≤16,
可得-1≤x≤16,
則不等式的解集為[-1,16].
點(diǎn)評(píng) 本題考查分段函數(shù)的運(yùn)用:求函數(shù)值和解不等式,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{1}{2}]$ | B. | (1,2] | C. | $[\frac{5}{8},1)$ | D. | $[\frac{1}{2},\frac{5}{8}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24π | B. | 30π | C. | 48π | D. | 60π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2]∪(0,2] | B. | (-∞,-2]∪[2,+∞) | C. | (-∞,-2]∪[0,2] | D. | (-∞,-2]∪{0}∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P?Q | B. | P?Q | C. | P=Q | D. | P∩Q=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com