16.已知集合P={x|x=sin$\frac{(5k-9)π}{3}$,k∈Z},Q={y|y=cos$\frac{5(9-2m)π}{6}$,m∈Z},則P與Q的關(guān)系是( 。
A.P?QB.P?QC.P=QD.P∩Q=∅

分析 利用誘導公式,即可得出結(jié)論.

解答 解:cos$\frac{5(9-2m)π}{6}$=sin($\frac{5}{3}$mπ+$\frac{45π}{6}$-$\frac{π}{2}$)=sin($\frac{5}{3}$mπ+7π)=sin($\frac{5}{3}$mπ-3π),
∵集合P={x|x=sin$\frac{(5k-9)π}{3}$,k∈Z},
∴P=Q,
故選:C.

點評 本題考查集合的關(guān)系,考查誘導公式的運用,比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知平面向量$\overrightarrow{a}$=(2cos2x,sin2x),$\overrightarrow$=(cos2x,-2sin2x),f(x)=$\overrightarrow{a}$•$\overrightarrow$ 要得到y(tǒng)=2cos(2x-$\frac{π}{6}$)的圖象,只需要將y=f(x)的圖象(  )
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.點A,B的坐標分別是(-5,0),(5,0),直線AM,BM相交于點M,且它們的斜率之積是$\frac{4}{9}$,則點M的軌跡方程是( 。
A.$\frac{x^2}{25}+\frac{{9{y^2}}}{100}=1(x≠±5)$B.$\frac{x^2}{25}+\frac{{100{y^2}}}{9}=1(x≠±5)$
C.$\frac{x^2}{25}-\frac{{9{y^2}}}{100}=1(y≠0)$D.$\frac{x^2}{25}-\frac{{100{y^2}}}{9}=1(y≠0)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}(x<1)}\\{lo{g}_{4}x(x≥1)}\end{array}\right.$.
(1)求f(0),f(2),f(f(3))的值;
(2)求不等式f(x)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知在正方體ABCD-A1B1C1D1中,M、E、F、N分別是A1B1、B1C1、C1D1、D1A1的中點.求證:
(1)EF∥平面ABCD;
(2)平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在直角坐標系中,一動點從點A(1,0)出發(fā),沿單位圓(圓心在坐標原點半徑為1的圓)圓周按逆時針方向運動$\frac{2}{3}$π弧長,到達點B,則點B的坐標為( 。
A.(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.橢圓$\frac{4}{25}{x^2}+\frac{y^2}{5}$=1過右焦點有n條弦的長度成等差數(shù)列,最小弦長為數(shù)列的首項a1,最大弦長為an,若公差為d$∈[\frac{1}{6},\frac{1}{3}],那么n$的取值集合為(  )
A.{4,5,6,7}B.{4,5,6}C.{3,4,5,6}D.{3,4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+b}{{1+{x^2}}}$是定義在(-1,1)上的奇函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)解不等式 f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求下列函數(shù)的不定積分.
(1)∫$\frac{1}{\sqrt{x}+\sqrt{x+1}}$dx;
(2)∫$\frac{1}{(x-1)(x+2)}$dx.
(3)∫$\frac{{x}^{2}}{{a}^{2}+{x}^{2}}$dx.

查看答案和解析>>

同步練習冊答案