16.已知函數(shù)f(x)=ax3-x2+x+2,g(x)=$\frac{elnx}{x}$,若對(duì)于?x1∈(0,1],?x2∈(0,1],都有f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是[-2,+∞).

分析 求出g(x)的最大值,問題轉(zhuǎn)化為ax3-x2+x+2≥0在(0,1]恒成立,即a≥$\frac{{x}^{2}-x-2}{{x}^{3}}$在(0,1]恒成立,令h(x)=$\frac{{x}^{2}-x-2}{{x}^{3}}$,x∈(0,1],根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:g′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,而x∈(0,1],
故g′(x)>0在(0,1]恒成立,
故g(x)在(0,1]遞增,
g(x)max=g(1)=0,
若?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),
只需f(x)min≥g(x)max即可;
故ax3-x2+x+2≥0在(0,1]恒成立,
即a≥$\frac{{x}^{2}-x-2}{{x}^{3}}$在(0,1]恒成立,
令h(x)=$\frac{{x}^{2}-x-2}{{x}^{3}}$,x∈(0,1],
h′(x)=$\frac{-(x-1)^{2}+7}{{x}^{4}}$>0,
h(x)在(0,1]遞增,
故h(x)max=h(1)=-2,
故a≥-2,
故答案為:[-2,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓x2+y2-4x+6y=0和圓x2+y2-6x=0交于A,B兩點(diǎn),則直線AB的方程是(  )
A.x+3y=0B.3x-y=0C.3x-y-9=0D.3x+y+9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某地西紅柿從2月1日起開始上市,通過市場(chǎng)調(diào)查,得到西紅柿種植成本Q(單位:元/10kg)與上市時(shí)間t(單位:元)的數(shù)據(jù)如表:
時(shí)間t50110250
種植成本Q150108150
(1)根據(jù)上表數(shù)據(jù)判斷,函數(shù)Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt中哪一個(gè)適宜作為描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系?簡(jiǎn)要說明理由;
(2)利用你選取的函數(shù),求西紅柿種植成本最低時(shí)的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x=1,x=5是函數(shù)f(x)=cos(ωx+φ)(ω>0)兩個(gè)相鄰的極值點(diǎn),且f(x)在x=2處的導(dǎo)數(shù)f′(2)<0,則f(0)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-^{2}}$=$\frac{2sinA-sinC}{sinC}$,且b=4.
(1)求角B;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線C:y2=12x,過點(diǎn)P(2,0)且斜率為1的直線l與拋物線C相交于A、B兩點(diǎn),則線段AB的中點(diǎn)到拋物線C的準(zhǔn)線的距離為(  )
A.22B.14C.11D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD與BC交于點(diǎn)M,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OM}$;
(2)在線段AC上取一點(diǎn)E,在線段BD上取一點(diǎn)F,使EF過M點(diǎn),設(shè)$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$,求證:$\frac{1}{7p}$+$\frac{3}{7q}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA垂直底面ABCD,PA=AB=2,E是棱PB的中點(diǎn).
(1)若AD=2,求B到平面CDE的距離;
(2)若平面ACE與平面CED夾角的余弦值為$\frac{3\sqrt{17}}{17}$,求此時(shí)AD的長(zhǎng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若點(diǎn)P(x0,y0)是曲線y=xex上任意一點(diǎn),則|x0-y0-4|的最小值為( 。
A.4B.$3\sqrt{2}$C.$2\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案