若cos(π+x)•csc(2π-x)•
sec2x-1
=-1,則x的終邊落在( 。
A、第2象限
B、第4象限
C、第2象限或第4象限
D、第1象限或第3象限
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值,象限角、軸線角
專題:三角函數(shù)的求值
分析:根據(jù)三角函數(shù)的誘導(dǎo)公式,以及同角的三角函數(shù)的關(guān)系式進(jìn)行化簡(jiǎn)即可得到結(jié)論.
解答: 解:cos(π+x)•csc(2π-x)•
sec2x-1
=-cosx
1
sin(2π-x)
•|tanx|
=
cosx
sinx
•|tanx|,
若tanx>0,則
cosx
sinx
•|tanx|=
cosx
sinx
•tanx=1,
若tanx<0,則
cosx
sinx
•|tanx|=-
cosx
sinx
•tanx=-1,
則由條件知,tanx<0,
即x的終邊落在第2象限或第4象限,
故選:C.
點(diǎn)評(píng):本題主要考查三角函數(shù)值的化簡(jiǎn)和角的終邊和三角函數(shù)值符號(hào)之間的關(guān)系,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+bx+c為偶函數(shù),關(guān)于x的方程f(x)=a(x+1)2(a≠1)的根構(gòu)成集合{1}.
(1)求a,b,c的值;
(2)求證:
f(x)
5
-1
2
|x|+1對(duì)任意的x∈[-2,2]恒成立;
(3)設(shè)g(x)=
f(x)
+
f(2-x)
若存在x1,x2∈[0,2],使得|g(x1)-g(x2)|≥m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線C1
x2
a2
-
y2
b2
=1,(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,拋物線C2的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)為F2,過F1的直線與拋物線C2的一個(gè)交點(diǎn)為A,與圓x2+y2=a2相切于點(diǎn)M,若線段F1A的中點(diǎn)恰為M,則雙曲線C1的離心率為(  )
A、
1+
5
2
B、
1+
3
2
C、
5
2
D、
3+
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,定義點(diǎn)P(x1,y1)、Q(x2,y2)之間的“直角距離”為L(zhǎng)(P,Q)=|x1-x2|+|y1-y2|,已知點(diǎn)A(x,1)、B(1,2)、C(5,2)三點(diǎn).
(1)若L(A,B)>L(A,C),求x的取值范圍;
(2)當(dāng)x∈R時(shí),不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A;
(2)求sinB+sinC的最大值;
(3)若sinB+sinC=1,判斷△ABC的性狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=
3x2-x
x
+5
x
-9
x
,則y′=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時(shí),函數(shù)的解析式為f(x)=
1
4x
-
a
2x
(a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[-1,0]上的最大值.
(3)對(duì)任意的x1,x2∈[-1,1]都有|f(x1)-f(x2)|≤M成立,求最小的整數(shù)M的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
sinθ+2cosθ
2sinθ+cosθ
=3,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={1,2,3,4,5},集合A={2,2,3},B={2,4},則(∁UA)∪B為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案