6.已知復數(shù)$z=-1+\sqrt{3}i$,則$\frac{1}{z}$=(  )
A.$-\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$B.$-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$C.$\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$D.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵$z=-1+\sqrt{3}i$,
∴$\frac{1}{z}$=$\frac{1}{-1+\sqrt{3}i}=\frac{-1-\sqrt{3}i}{(-1+\sqrt{3}i)(-1-\sqrt{3}i)}=\frac{-1-\sqrt{3}i}{4}$=$-\frac{1}{4}-\frac{\sqrt{3}}{4}i$.
故選:A.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.解下列不等式:
(1)x2-2x-8≥0;
(2)x2-18x+32<0;
(3)x2+3x-54≤0;
(4)x2-4x+5>0;
(5)3x2+2x+1<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某單位為了了解用電量y度與氣溫x℃之間的關系,隨機統(tǒng)計了某4天的用電量與當天氣溫.
氣溫(℃)141286
用電量(度)22263438
(1)求線性回歸方程;($\sum_{n=1}^4{x_i}{y_i}=1120,\sum_{n=1}^4{x_i}^2=440$)
(2)根據(jù)(1)的回歸方程估計當氣溫為10℃時的用電量.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=sinx•cos(x-\frac{π}{6})+{cos^2}x-\frac{1}{2}$
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若$f({x_0})=\frac{11}{20},{x_0}∈[\frac{π}{6},\frac{π}{2}]$,求cos2x0的值;
(3)在△ABC中,角A、B、C的對邊分別為a,b,c,若$f(A)=\frac{1}{2},b+c=3$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}的前n項和${S_n}=2{a_n}-1,n∈{N^*}$,則{an}的通項公式為an=2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.拋物線$y=\frac{1}{8}{x^2}$上到焦點的距離等于10的點的坐標為(8,8)或(-8,8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$,若方程f(x)=t,(t∈R)有四個不同的實數(shù)根x1,x2,x3,x4,則x1x2x3x4的取值范圍為(32,34).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)化簡:$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+a)}$.
(2)若α、β為銳角,且$cos(α+β)=\frac{12}{13}$,$cos(2α+β)=\frac{3}{5}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.直線x+2ay-1=0與直線(a-1)x-ay-1=0平行,則a的值是0或$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案