17.某單位為了了解用電量y度與氣溫x℃之間的關(guān)系,隨機統(tǒng)計了某4天的用電量與當(dāng)天氣溫.
氣溫(℃)141286
用電量(度)22263438
(1)求線性回歸方程;($\sum_{n=1}^4{x_i}{y_i}=1120,\sum_{n=1}^4{x_i}^2=440$)
(2)根據(jù)(1)的回歸方程估計當(dāng)氣溫為10℃時的用電量.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (1)根據(jù)表中數(shù)據(jù)可以求出$\overline{x},\overline{y}$,再根據(jù)$\sum_{n=1}^{4}{x}_{i}{y}_{i}=1120,\sum_{n=1}^{4}{{x}_{i}}^{2}=440$,由提供的計算回歸直線的斜率和截距的公式便可求出$\widehat,\widehat{a}$,從而寫出回歸直線方程;
(2)根據(jù)回歸直線方程,帶入x=10,便可得出氣溫為10℃時的用電量y.

解答 解:(1)由表可得:$\overline{x}=\frac{14+12+8+6}{4}=10,\overline{y}=\frac{22+26+34+38}{4}=30$;
又$\sum_{n=1}^{4}{x}_{i}{y}_{i}=1120,\sum_{n=1}^{4}{{x}_{i}}^{2}=440$;
∴$\widehat=\frac{1120-4×10×30}{440-4×1{0}^{2}}=-2$,$\widehat{a}=30-(-2)×10=50$;
∴線性回歸方程為:$\widehat{y}=-2x+50$;
(2)根據(jù)回歸方程:當(dāng)x=10時,y=-2×10+50=30;
∴估計當(dāng)氣溫為10℃時的用電量為30度.

點評 考查回歸直線的概念,以及線性回歸方程的求法,直線的斜截式方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線l1:(a+1)x+a2y-3=0與直線l:2x+ay-2a-1=0平行,則a=( 。
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法錯誤的是( 。
A.命題p:“?x0∈R,x02+x0+1<0”,則¬p:“?x∈R,x2+x+1≥0”
B.命題“若x2-4x+3=0,則x=3”的逆否命題是假命題
C.命題“若m>0,則方程x2+x-m=0有實數(shù)根”的否定是“若m>0,則方程x2+x-m=0沒有實數(shù)根”
D.若p∧q為假命題,則p∨q為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若tanθ=3,則2sin2θ-sinθcosθ-cos2θ=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于函數(shù)$f(x)=sin({2x+\frac{π}{6}})$的圖象:
①關(guān)于直線$x=-\frac{π}{12}$對稱;
②關(guān)于點$({\frac{5π}{12},0})$對稱;
③可看作是把y=sin2x的圖象向左平移$\frac{π}{6}$個單位而得到;
④可看作是把$y=sin({x+\frac{π}{6}})$的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍而得到.
以上敘述正確的序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若已知$cos({\frac{π}{4}+x})=\frac{3}{5},\frac{17π}{12}<x<\frac{7π}{4}$,求sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$在它的某一個周期內(nèi)的單調(diào)減區(qū)間是$[\frac{5π}{12},\frac{11π}{12}]$.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象先向右平移$\frac{π}{6}$個單位,再將圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),所得到的圖象對應(yīng)的函數(shù)記為g(x),若對于任意的$x∈[\frac{π}{8},\frac{3π}{8}]$,不等式|g(x)-m|<1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)$z=-1+\sqrt{3}i$,則$\frac{1}{z}$=( 。
A.$-\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$B.$-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$C.$\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$D.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且l1過點M(-3,-1);
(2)l1∥l2,且l1,l2在y軸上的截距互為相反數(shù).

查看答案和解析>>

同步練習(xí)冊答案