【題目】如圖,在平面直角坐標系xOy中,過點A(﹣6,0)的直線l1與直線l2:y=2x相交于點B(m,4).
(1)求直線l1的表達式;
(2)過動點P(n,0)且垂于x軸的直線與l1 , l2的交點分別為C,D,當點C位于點D上方時,寫出n的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們對環(huán)境關(guān)注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到自行車服務(wù)中心辦理誠信借車卡借車,初次辦卡時卡內(nèi)預先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應持卡到公共自行車服務(wù)中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,扣1分;
③租用時間為2小時以上且不超過3小時,扣2分;
④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).
甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】畢節(jié)市正實施“五城同創(chuàng)”計劃。為搞好衛(wèi)生維護工作,政府招聘了200名市民志愿者,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如下:
分組(歲) | 頻數(shù) | 頻率 |
[30,35) | 20 | 0.1 |
[35,40) | 20 | 0.1 |
[40,45) | ① | 0.2 |
[45,50) | ② | ③ |
[50,55] | 40 | 0.2 |
合計 | 200 | 1 |
(1)頻率分布表中的①②③位置應填什么數(shù)?補全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計這200名志愿者的平均年齡.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓:的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且.直線與軸、軸分別交于,兩點.設(shè)直線,的斜率分別為,,證明存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左焦點為,過點F做x軸的垂線交橢圓于A,B兩點,且.
(1)求橢圓C的標準方程:
(2)若M,N為橢圓上異于點A的兩點,且直線的傾斜角互補,問直線MN的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知R,命題:對任意,不等式恒成立;命題:存在,使得成立.
(1)若為真命題,求的取值范圍;
(2)若且為假, 或為真,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的程序框圖表示的算法功能是( )
A. 計算小于100的奇數(shù)的連乘積
B. 計算從1開始的連續(xù)奇數(shù)的連乘積
C. 從1開始的連續(xù)奇數(shù)的連乘積,當乘積大于或等于100時,計算奇數(shù)的個數(shù)
D. 計算1×3×5×…×n≥100時的最小的n的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2016高考天津文數(shù)】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y計劃表示生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com