5.已知f(x)是奇函數(shù),當(dāng)x<0時(shí),f(x)=x(x+1)+2,則當(dāng)x>0時(shí),f(x)=x(1-x)-2.

分析 由f(x)為奇函數(shù),可得當(dāng)x>0時(shí),-x<0,f(x)=-f(-x)得到x>0時(shí),f(x)的解析式,綜合可得答案.

解答 解:∵f(x)是奇函數(shù),當(dāng)x<0時(shí),f(x)=x(x+1)+2,
∴當(dāng)x>0時(shí),-x<0,f(x)=-f(-x)=-[-x(-x+1)+2]=x(1-x)-2,
故答案為:x(1-x)-2.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)奇偶性的性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知A,B,C是圓O:x2+y2=1上不同的三個(gè)點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}$=0,存在實(shí)數(shù)λ,μ滿足$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,則點(diǎn)(λ,μ)與圓O的位置關(guān)系是( 。
A.在圓O外B.在圓O上C.在圓O內(nèi)D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)直線l:y=kx+1與曲線f(x)=ax2+2x+b+ln(x+1)(a>0)相切于點(diǎn)P(0,f(0)).
(1)求b,k的值;
(2)若直線l與曲線y=f(x)有且只有一個(gè)公共點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)集合M={x|5-|2x-3|∈N*},則M的所有真子集的個(gè)數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解方程
(1)${9}^{{x}^{2}-3x}$=$\frac{1}{81}$
(2)log4(3-x)=log4(2x+1)+log4(3+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個(gè)函數(shù)中,函數(shù)值的最小值為2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}({0<x<\frac{π}{2}})$
C.y=3x+3-xD.y=lgx+$\frac{1}{lgx}({1<x<10})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系xoy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過點(diǎn)(-1,1),若對(duì)任意的實(shí)數(shù)m,直線l被圓C截得的弦長(zhǎng)都是定值,則直線l的方程為2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)={({\frac{1}{2}})^x}$,函數(shù)$g(x)={log_{\frac{1}{2}}}$x.
(1)若g(mx2+2x+m)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=[f(x)]2-2af(x)+3的最小值h(a);
(3)是否存在非負(fù)實(shí)數(shù)m、n,使得函數(shù)$y={log_{\frac{1}{2}}}f({x^2})$的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m、n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x),且f(x),f(x+1)都是偶函數(shù),當(dāng)x∈[-1,0)時(shí)$f(x)={({\frac{1}{2}})^x}$,則f(log28)等于( 。
A.3B.$\frac{1}{8}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案